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MANIFOLDS WITH PREASSIGNED CURVATURE— 
A SURVEY 

BY HERMAN GLUCK1 

In this paper I discuss two problems of Riemannian geometry in the 
large concerning the existence of manifolds with preassigned curvature. 

The Minkowski problem and its generalization asks in Euclidean 
space for a closed convex hypersurface whose curvature has been given 
in advance. The converse to the Gauss-Bonnet theorem asks for the exist­
ence, on a two-dimensional manifold, of a Riemannian metric with 
prescribed Gaussian curvature. The questions have a meeting point: 
the search for two-spheres in three-space with given strictly positive 
curvature. 

While the first problem goes back to the work of Minkowski [32] 
in 1897, the second is of more recent vintage: it was posed explicitly by 
Warner in the early 1960's. Both have been solved in the last few years, 
and in this survey I try to give an overview and some of the details. 

The paper is organized into the following sections: 
1. The Minkowski problem 
2. The generalized Minkowski problem 
3. Converse to the Gauss-Bonnet theorem for smooth manifolds 
4. Converse to the Gauss-Bonnet theorem for PL manifolds 
5. Realization in three-space 

1. The Minkowski problem. 
(1.1) CURVATURE OF CONVEX HYPERSURFACES. Let Mn be a smooth 

closed convex hypersurface in Euclidean space RnJrl. The Gauss map 
y:Mn-+Sn associates with each point xeM the unit outward normal 
vector to M at x. Given a region A on M, the ratio 

area of y(A) on Sn 

area of A on Mn 

represents the average curvature of M throughout the region A, and its 
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limit, as A shrinks down to x, is the curvature of M at x. For n^.3 this 
is often called the Gauss-Kronecker curvature to distinguish it from 
other types of curvature. 

If, in addition, M is strictly convex, then y is a homeomorphism and 
its inverse is a parametrization of M. Under what conditions, Minkowski 
wanted to know, can one preassign a strictly positive function K:Sn-^F} 
and then find Mn as above so that its curvature at the point y~x(p) is 
precisely the preassigned value K(p) for all/? e 5 n? 

From a slightly different view, suppose one wanted to preassign the 
average curvature of the set y^B) for each reasonable subset BczSn. It 
would be enough to preassign the area of y~~l(B) on M, since then the 
average curvature would be the value of the fraction 

area of B on Sn 

area of y~\E) on Mn ' 

Minkowski therefore recognized that preassigning an area function in 
the above sense had the same spirit as preassigning a curvature function. 

He began by formulating the problem in the PL category. 

(1.2) PL MINKOWSKI THEOREM. Let nl9- - - ,nm be distinct, noncoplanar 
unit vectors in Rz, andFl9 • • • , Fm real numbers > 0 such that 2?=i Ffi^Q. 
Then there exists in Rz a closed convex polyhedral surface, unique up to 
translation, for which the fy and Ft are the unit outer normals and surface 
areas of its faces. 

The condition 2 ? = i ^ « i = 0 can be thought of as expressing the fact 
that any such surface, when projected on any plane, must have an image 
with total area (counting algebraic signs) zero. Minkowski [32] gave a 
nice proof of this theorem, and Bonnesen and Fenchel [9] later recog­
nized that with inessential changes it could be generalized to the case of 
convex hypersurfaces in a Euclidean space of any dimension. A. D. 
Alexandrov reproved this result in a striking way [6], and since his method­
ology has far-reaching applications, I will sketch it instead. 

Alexandrov began by proving the following geometric fact. 

(1.3) LEMMA. Let Px and P2 be convex polygons in the plane which 
cannot be moved by parallel translation so that one contains the other. 
Then the difference of lengths of corresponding parallel sides must change 
sign at least four times as one circles Px or P2. 

The convention in effect here is that any two convex polygons may be 
regarded as having pairwise parallel sides, some of which may have 
length 0. Thus, comparing a diamond with a square, each has eight sides, 
four of which are of length 0. The two figures alternate as to which has 
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the larger corresponding side, so that the sign mentioned in the statement 
of the lemma changes eight times. 

Next Alexandrov restated the following result of Cauchy. 

(1.4) CAUCHY LEMMA. Let LczS2 be a finite graph having no circular 
edges and having no region of S2—L bounded by just two edges. Mark the 
edges ofL randomly with + or —. Let Nv denote the number of changes of 
sign, as one circles v, of the edges touching that vertex. Let N=%VNV 

denote the total number of sign changes, and V the number of vertices ofL. 
Then 

N^4V-S. 

In particular, it is impossible that each Nv^4. 

This lemma was proved and used by Cauchy [12] in the course of 
showing that all convex polyhedra in R3 are rigid, and is done by a simple 
combinatorial argument, which the reader can find in [6] or [31]. 

Next Alexandrov tackled the uniqueness part of the proof. 

(1.5) UNIQUENESS. TWO convex polyhedra in R3, whose faces are pair-
wise parallel and of equal area, differ at most by a parallel translation. 

To separate out the essential part of this argument, pretend that each 
pair of parallel faces has pairwise parallel edges. Pick one of the poly­
hedra, say Pl9 and mark its edges + or —, according as they are longer 
or shorter than the corresponding edges of P2, and leave the edge un­
marked if equal. Circling around the boundary of a face of Pl9 we get no 
marked edges if that face is congruent via parallel translation to the 
corresponding face of P2. Otherwise, since they have equal area, neither 
can be moved by parallel translation so as to contain the other, and the 
previous lemma then promises at least four sign changes around the 
boundary. 

The spherical image P* of P1 under the Gauss map is combinatorially 
dual to it, and one then applies the Cauchy Lemma to P*, first deleting 
the images of unmarked edges. The simple hypotheses of the Cauchy 
Lemma are easily seen to be satisfied. The conclusion is that no edge of 
Px was marked, and therefore that each face of Px is congruent via parallel 
translation to the corresponding face of P2. It follows immediately that 
Px and P2 are themselves congruent via parallel translation. 

The pretense of pairwise parallel edges is avoided in a strict proof by 
introducing the polyhedron P=(Px+P2)/2 as a bookkeeping device. 
Its virtue lies in the fact that P* is the greatest common subdivision of 
Pf and Pi. Details may be found in [6]. 

(1.6) REMARK. Unfortunately, the above uniqueness argument does 
not work in higher dimensions. To see this, note that what was essentially 
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proved is that if two convex polyhedra in JR3 have pairwise parallel faces, 
neither properly embeddable in the other via parallel translation, then 
these polyhedra must in fact be congruent via parallel translation. But 
this is already false in four-space, as the reader may see by comparing 
the hypercube of side 2 with a rectangular parallelepiped of sides 1 , 1 , 
3, 3. Nevertheless, the uniqueness theorem is true in all dimensions via 
a different proof, namely Minkowski's. 

(1.7) EXISTENCE. It is the existence part of Alexandrov's argument 
that is so striking. Let P be a convex polyhedron in Rz. The distance 
from the origin to the plane containing the ith face of P is denoted by hi9 

with a positive sign if the origin and the rest of P are on the same side of 
this plane, and a negative sign if not. The numbers hl9 • • • , hm are called 
the support numbers of P. If the outer normals nl9 • • • , nm to the faces of P 
are known, then P may be reconstructed once its support numbers are 
known. 

Return to the statement of the PL Minkowski theorem. We are told 
the (noncoplanar) unit outer normals nl9 • • • , nm and the face areas 
î> ' • " 9 F m of a proposed convex polyhedron in Rz

9 subject to the relation 
2 t i y ^ = 0 , and must demonstrate the existence of such a polyhedron. 

Keep ftl9 • • • , nm fixed but let Fl9 • • • , Fm vary, still subject to the 
relation. Then we get a whole family of problems, that is, a,problem space 

0> = ^Fl9---9FJ: e a c h F < > 0 and J F&; = oj, 

which can be viewed as an open convex set in some Rm~z. It is nonempty 
because there is certainly a convex polyhedron circumscribed about the 
unit sphere and having unit outer normals nl9 ' - - 9 ftm to its faces. 

By contrast, the solution space should simply be the set of all convex 
polyhedra in Rz with these face normals. They may be parametrized by 
their support numbers (hl9 • • • , hm). Conversely, given such support 
numbers, we may draw in the planes nt • x~ht and expect to see P emerge 
as the intersection of the corresponding half spaces «̂  • x^h^ Of course 
it may happen that some of the faces of P will not appear, since the inter­
section may equal an intersection with fewer terms. In any case, it is clear 
that the polyhedra P actually exhibiting all m faces correspond to an open 
subset SfQ of the parameter space Rm={(hl9 • • • , hm)}. If one now 
reckons two polyhedra equivalent when congruent via a parallel trans­
lation, and views this on the parameter space Sf09 one gets a quotient 
space 

<? = ^/parallel translation, 

which is easily seen to correspond to an open subset of Rm~z. Sf is the 
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solution space for the given family of problems, also nonempty by circum­
scription about the unit sphere in Rz. 

What one wants to show is that each problem has a solution. What is 
in any case clear, Alexandrov points out, is that each solution has a 
problem. This is expressed by a map 9?: «9*-*^, which is easily seen to be 
continuous. The uniqueness half of the proof, already settled, indicates 
that q) is one-to-one. Since £f and 3P are both manifolds of dimension 
m—3, "invariance of domain" implies that <p is an open map. 

To see that <p(S?) is a closed set is easy. But then <p(^)9 as a nonempty 
open and closed subset of the connected space ^ , must be all of ^ . 
Thus every problem has a solution, which finishes the existence part of 
Alexandrov's argument, and with it his proof of the PL Minkowski 
theorem. 

Using the PL version just proved, together with a convergence argument, 
Minkowski was then able to obtain the following more general result. 
We incorporate Bonnesen and FenchePs observation [9] that Minkowski's 
original proof is easily extended to any dimension, by so stating the 
theorem. 

(1.8) MINKOWSKI'S THEOREM. Let F be a nonnegative, completely 
additive set function defined on all Borel subsets of the unit sphere Sn c 
J?**1, n^29 such that 

(1) Jsn/?F(</Q)=0, 
(2) F(S)<F(Sn)for every great (n-1) sphere S on Sn. 

Then F is the area function of a closed convex hypersurface Mn <zRn+1 which 
is unique up to parallel translation. 

Note that condition (1) is the analogue of the equation 2* ^V*i=0 in 
the PL version, while (2) is the analogue of the requirement that the 
vectors Hl9 • • • , fim be noncoplanar. See [33]. 

What Minkowski really wanted to prove, but did not, was 

(1.9) SMOOTH MINKOWSKI THEOREM. Let K: Sn-^R1
9 n ̂ 2 , be a smooth 

strictly positive function such that j8n (rt(p)lK(p))d£l=0. Then there exists 
a smooth closed convex hypersurface Mn c JRn+1, unique up to parallel 
translation, whose Gauss map y:Mn—>Sn is a homeomorphism, such that 
the Gaussian curvature of M at the point y~\p) is K(p)for all p e Sn. 

The most difficult thing was to prove the smoothness of the solution, 
given a smooth preassigned curvature function K, and this was done 
as follows. 
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n=2: 
(1) KeC°=>M2eC1 Alexandrov 1942 [4] 
(2) K e Cr => M2 e Cr+\ r ^ 2 Pogorelov 1952 [38] 

Nirenberg 1953 [37] 
(3) K analytic => M2 analytic Lewy 1938 [30] 

(4) KeCr=>M2eC, r ^ 3 Pogorelov 1971 [39] 
(5) K analytic => M2 analytic Pogorelov 1971 [39] 

2. The generalized Minkowski problem. A question more primitive 
than that answered by Minkowski's theorems is whether a preassigned 
strictly positive curvature function, unencumbered by any integrability 
condition, can be realized by some embedding of Sn-+Rn+1, not neces­
sarily the inverse of the Gauss map. 

(2.1) GENERALIZED MINKOWSKI THEOREM. Let K:Sn-+R\ n^ly be 
a strictly positive function. Then there exists an embedding G:Sn-+Rn+1 

onto a closed convex hyper surface Mn, whose Gaussian curvature at the 
point G(p) is K(p)for all p e Sn, subject to the following smoothness con­
ditions : 

For n=2: KeCr=>G e Cr+1for r=0 or r ^ 2 . 
For n^3 : K e Cr=>G e Crfor r^3. 

The proof can be found in [17]. For «=1 , this theorem has a variation 
in which the required embedding G exists if and only if K has at least 
two maxima and two minima, and one obtains thereby a converse to the 
classical 4-vertex theorem of differential geometry. A simplified proof, 
covering this case only, appears in [18]. 

(2.2) A REDUCTION OF THE PROOF. Given the strictly positive function 
K:Sn^>Rx as in the hypotheses, one should first check in spirit whether 
or not $Sn (n(p)IK(p)) dQ=0. If this integral vanishes, just apply the 
Smooth Minkowski Theorem (1.9) to get the result. But in general the 
integral does not vanish; its value is some random vector in Rn+1. 

Suppose for the moment that the problem is solvable, that is, that there 
is an embedding G:Sn-^Rn+1 with the curvature of the image Mn at the 
point G(p) being K(p). Then the curvature of the image at the point 
y1^), where y:Mn->5n is the Gauss map, is KiG^y-^q)). Hence by 
the integrability condition for (1.9) 

f - S E L * . * 
JsnKh-\p) 

where h stands for the diffeomorphism yG of Sn onto itself. 
Conversely, if a diffeomorphism h of Sn onto itself exists making the 

above integral zero, let Mn be the solution of the smooth Minkowski 
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problem for the curvature function Khr1. Then define G=y~xh, and note 
that the curvature of Mn at the point G(p)=y-1(h(p)) is Kh^Qiip^Kip). 

(2.3) CONCLUSION. TO solve the generalized Minkowski problem, it is 
necessary and sufficient to find a diffeomorphism h of Sn onto itself such 
that the above integral vanishes. 

(2.4) REMARK. More generally, the following is true. 
Let MnczRn+1

9 n^.2, be a smooth closed manifold, n(x) the unit 
outward normal vector to M at x, andfM-^R1 any continuous 
function. Then there exists a diffeomorphism h o f M onto itself 
diffeotopic to the identity, for which 

[ fh-^xMx) dA = 0. 

This can also be found in [17]. 
(2.5) ANALOGY WITH A PROOF OF THE FUNDAMENTAL THEOREM OF 

ALGEBRA. The hunt for such a diffeomorphism h proceeds by analogy 
with the topologist's hunt for a root of the complex polynomial equation 
f(z)=0. Here we are looking for a root of the equation 

1(h) = f fh-\x)n(x) dA = 0. 
JMn 

One starts by regarding the group Diff(Mw) of diflfeomorphisms of M 
onto itself with the C00 topology as the analogue of the complex plane, 
but soon abandons this in favor of a certain (2«+2)-cell B2n+2 in Diff(AP), 
which now shares with the complex plane the advantage of being contrac-
tible. A certain «-sphere S n c 5 2 n + 2 is constructed to play a role analogous 
to that of a circle of large radius in the complex plane. Specifically, no 
roots of the equation 1(h)=0 can be found on Sn . Thus 

/ | 2 n : S n — J T + 1 - {0}, 

and the final step is to prove, still faithful to the analogy, that this map is 
essential. The conclusion that / has roots in B2n+2 is then inescapable, 
and the argument ends. 

3. Converse to the Gauss-Bonnet theorem for smooth manifolds. If 
the smooth closed two-manifold M2 has a Riemannian metric with cur­
vature K, then the beautiful theorem of Gauss [15] and Bonnet [10] 
relates this to the Euler characteristic: 

KdA = 2<TTx(M). 

This in turn limits the possible functions which can serve as the curvature 
of a Riemannian metric on a given surface. For example, a negative 
function on the two-sphere could not possibly be the Gaussian curvature 
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of a Riemannian metric there because there is no way it could integrate 
to ATT. This constraint, imposed on the curvature by the topology of the 
surface, is all the more remarkable in that no others are known. 

(3.1) THE SIGN CONDITION. If K is to be the Gaussian curvature of 
some Riemannian metric on M, we cannot formulate the Gauss-Bonnet 
theorem in advance, because before M gets a Riemannian metric, it 
does not have an area element. We can extract, however, the following 
constraint on the sign of K: 

(a) If %(M)>0, K must be positive somewhere on M. 
(b) If #(M)=0, K (if not identically 0) must change sign. 
(c) If x(M)<0, K must be negative somewhere. 
(3.2) THREE RELATED PROBLEMS. The converse to the Gauss-Bonnet 

theorem can now be recorded as 
CONJECTURE A. If K satisfies the sign condition, then there is a Rie­

mannian metric on M having K as its Gaussian curvature. 
We see from the Generalized Minkowski Theorem (2.1) that this conjec­

ture is true if M is a two-sphere and K>0 everywhere. In the remaining 
cases, Kazdan and Warner found it advantageous to relate the problem 
to two further conjectures. 

CONJECTURE B. If K satisfies the sign condition, then there is a Rie­
mannian metric on M, conformally equivalent to a preassigned metric, 
having K as its Gaussian curvature. 

The metrics g and g0 on M are conformally equivalent if there is a smooth 
real valued function u on M and a diffeomorphism <p of M onto itself 
such that g=(p*(e2ug0), the pullback of e2ug0. 

CONJECTURE C. If K satisfies the sign condition, then there is a Rie­
mannian metric on M, pointwise conformai to a preassigned metric, having 
K as its Gaussian curvature. 

The metrics g and g0 are pointwise conformai if there is a smooth real 
valued function u on M such that g=e2ug0. 

Clearly, Conjecture C=>Conjecture B=>Conjecture A. 
Here is a table of results. 

Gluck [17]. Conjecture A is true on the two-sphere if K>0. 
Moser [34]. Conjecture C is true on the projective plane. 
Poincaré [40] and Mel Berger [8]. Conjecture C is true on surfaces of 

strictly negative Euler characteristic ifK<0. 
Kazdan and Warner [24]. Conjecture Cis false, except on the projective 

plane. 
Kazdan and Warner [24]. Conjecture B is true, except possibly for the 

two-sphere. 
Kazdan and Warner [27], [28]. Conjecture B is true, even for the two-

sphere. 
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CONCLUSION. Conjecture C is true for the projective plane and false 
otherwise. 

Conjecture B is true. 
Conjecture A, the converse to the Gauss-Bonnet theorem for smooth 

closed two-manifolds, is true. 
(3.3) THE EQUATION A0w=Ar0—Ke2u. In order to hint at the details, we 

must first translate the condition g=e2ug0 of Conjecture C into a partial 
differential equation for the unknown function u on M. Let K0 be the 
Gaussian curvature of the original metric g0, and K the Gaussian curvature 
of the desired metric g. 

To derive Equation (3.3) in which A0 denotes the Laplace operator for 
the metric g0, write 

go = e2vix'v)(dx2 + dy2) 

in local conformai parameters [13]. Then one computes: 

K0 = e~2v(vxx + vyy), A0u = -e-2v(uxx + uyy). 

If we apply the above curvature formula to the metric 

g = e2ug0 = e2(u+v)(dx2 + dy2), 
we get 

K = e-2^+«\uxx + vxx + uyy + vyy). 
But then 

K0 - Ke2» = -e-2«(uxx + uyy) = A0t/, 
as desired. 

(3.4) INTEGRABILITY CONDITIONS FOR A0U=K0—Ke2u. Roughly, the 
plan is first to try to solve Equation (3.3) for the unknown function w, 
which amounts to answering Conjecture C affirmatively. Failing this, one 
tries for integrability conditions for the equation. If they are not satisfied 
for the proposed curvature function K, one then looks for an appropriate 
diffeomorphism <p:M2->M2 so that they will be satisfied for the curvature 
function Kqr1. In that case, Kqr1 will be the curvature of a metric e2ug0 

on M2, and hence K the curvature of the metric q**(e2ug0), which will 
answer Conjecture B affirmatively. 

Here are a few details. 
(A) On the two-sphere S2. 
Koutroufiotis [29]. If K is antipodally symmetric, K(x)=K(—x), 

and close in measure to K0=l9 then Equation (3.3) is integrable. 
Moser [34]. If K(x)=K(—x) and K0=l, the equation is integrable. 
Kazdan and Warner [24]. In general, Equation (3.3) is not integrable. 

For example, suppose g0 is the metric induced on the unit sphere S2czR3 

by the Euclidean metric of Rz, so that K0=l. Then a necessary condition 
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which K must satisfy in order that (3.3) be integrable is 

f e2*(V0K)-(V0F)<L40 = 0, 
JSt 

for all first order spherical harmonics F, where V ^ and VQF denote the 
gradient vector fields of the functions K and F with respect to the round 
metric g09 the dot product is with respect to g0, and dA0 is the area element 
of g0. Now the coordinate functions x, y, z are the first order spherical 
harmonics on S2 in the standard metric. If K=z+29 for example, so that 
it is strictly positive, and if F=z, then the above integral is also strictly 
positive, so that the integrability condition is not satisfied. Hence K= 
z+2 cannot be the curvature of a metric on S2 pointwise conformai to 
the standard metric g0. Similar integrability conditions are obtained by 
Kazdan and Warner for any initial metric g0. 

(B) On the projective plane P2. 
Moser [34]. If K0=l, then Equation (3.3) is always integrable on the 

projective plane, and an extension of Moser's techniques yields the same 
result for any initial metric g0. 

(C) On the torus and Klein bottle. 
Kazdan and Warner [24]. Suppose g0 is a flat metric, so that K0=0. 

If K is identically 0, the problem is trivial; otherwise we know that K 
takes both positive and negative values by the sign condition. In this case, 
Kazdan and Warner obtain a necessary and sufficient condition for the 
integrability of (3.3), namely 

[ KdA0<0. 

Note the hybrid nature of this condition. It looks suspiciously like the 
Gauss-Bonnet theorem, except that equality is replaced by inequality. 
The point is that K is the curvature of the desired metric g=e2ug0, while 
dA0 is the area element of the original metric g0. 

This is a good place to see the general plan in action. If the above in­
tegrability condition is not satisfied by the proposed curvature function 
K, first find a point/? in M2 at which K(p)<0. Then find a diffeomorphism 
cp of M2 onto itself which spreads a small neighborhood U of/?, on which 
K<0, over most of M2. Then Kqrx<0 on most of M2, so that the inte­
grability condition J*^ Kqr1 dA0<0 is certainly satisfied. Thus Kqrx 

is the curvature of a metric e2ug0 on M2, and, hence, K is the curvature 
of the metric q>*(e2ug0). Therefore Conjecture B is answered affirmatively 
in this case. Similar results are obtained for any initial metric g0. 

(D) On surfaces with #<0. 
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Poincaré [40] and (by a different method) Mel Berger [8]. If K<0 
everywhere on M2, then Equation (3.3) is integrable for any initial metric 
So-

Kazdan and Warner [24]. Suppose g0 is a metric of constant negative 
Gaussian curvature. Then a necessary condition for the solvability of 
(3.3) is that 

f KdAo<09 

just as for the torus and Klein bottle, except that now the condition is no 
longer sufficient. Similar results hold for any initial metric g0. 

(3.5) It is clear from the above remarks that the treatment of Equation 
(3.3), and hence of Conjectures B and C, depends heavily on the topology 
of the surface M2. Here is one more item in that direction. 

Rewrite Equation (3.3) as 

T(u) = -<r2»(A0w - K0) = K, 

and note that T(0)=K0. It is natural to linearize this map T, because if 
the linearized version is invertible, then one can apply the inverse function 
theorem for Banach spaces to solve Equation (3.3) for K sufficiently close 
to K0. The curious result is that the linearized version is invertible for the 
projective plane with the standard metric and for surfaces of strictly nega­
tive Euler characteristic, but not invertible for certain initial metrics on the 
two-sphere, torus and Klein bottle (Kazdan and Warner [27], Koutrou-
fiotis [29]). 

(3.6) For a uniform overview of the attack on Conjectures B and C, 
I suggest Kazdan and Warner [27]. For a somewhat différent approach 
to Conjecture A, without the intermediacy of Conjectures B and C, see 
Kazdan and Warner [28], which depends on a result of Bourguignon [11] 
and Fisher and Marsden [14]. 

(3.7) NONCOMPACT SURFACES. Let M2 be a noncompact surface, dijfeo-
morphic to an open subset of some compact surface. Then any C™ function 
is the Gaussian curvature of some Riemannian metric on M2. 

See Kazdan and Warner [25]. 

4. Converse to the Gauss-Bonnet theorem for PL manifolds. Now let 
M2 be a compact PL two-manifold, possibly with boundary. A PL Rieman­
nian metric on M is determined by a triangulation of M and by linear 
metrics on each two-simplex of the triangulation, consistent with respect 
to the face operation. The curvature at an interior vertex is 2TT minus the 
sum of the angles around that vertex; the exterior angle at a boundary 
vertex is w minus the angle sum. 
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The elementary geometry of Riemannian polyhedra unfolds in a manner 
similar to that for smooth manifolds. For details in this direction, including 
a discussion of curvature in the PL category, I suggest [6], [7], [19] and 
[42]. 

In any case, the Gauss-Bonnet theorem holds for compact PL surfaces, 
and reads : 

2 curvature + 2 exterior angles = 2TT%(M). 
M dM 

Since curvature here is the analogue of integral curvature in the smooth 
category, this equation acts, undiluted, as a constraint on any such 
preassigned data. 

(4.1) THEOREM (JOINT WITH KENNETH KRIGELMAN AND DAVID SINGER). 

Let M be a connected compact PL two-manifold possibly with boundary. 
Let Pi, • ' • 9pr be points in the interior M of M. Let ql9 • • • , qs be points 
on the boundary dM of M. 

Given the data: (1) real numbers kx, • • • , kr9 each <2TT, 

(2) real numbers el9 • • • , es, each <7r, subject to the constraint: 

2^ + 2^ = 2 7 r *( M ) -
Then there exists a PL Riemannian metric on M with curvatures kt at 

each Pi, exterior angles ej at each qj9 and flat elsewhere. 

The proof is combinatorial, somewhat reminiscent of the classification 
procedure for compact triangulable surfaces. It was first obtained by Singer 
for the two-sphere with positive preassigned curvature, then for the two-
sphere without this restriction by the author, then by Krigelman (Ph.D. 
thesis, University of Pennsylvania, 1972) for closed surfaces, and finally 
in the above form. The reader is referred to [19] for details. 

5. Realization in three-space. In both the smooth and PL versions of the 
converse to the Gauss-Bonnet theorem, the desired Riemannian metric 
was produced in abstracto, not via any specific model in Euclidean space. 
One can of course add this as an extra requirement, and again ask for the 
answer. 

In the smooth case there is no problem because, by the Nash embedding 
theorem [36], a Riemannian metric on a compact manifold can always 
be realized by a model in Euclidean space. 

In the PL case, the analogue of the Nash embedding theorem is yet to 
be proved. Even the specific Riemannian metrics obtained in [19] to ex­
hibit preassigned curvature data are not known to be realizable in Euclid­
ean space. 
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Consider, by contrast, the question of readability of solutions in 3-
space. In general, of course, the answer is no. A smooth closed surface 
in 3-space must have points of strictly positive curvature. Hence a metric 
with Gaussian curvature everywhere negative on a closed surface of nega­
tive Euler characteristic cannot be realized in 3-space. And the closed 
nonorientable surfaces cannot even be realized in 3-space for topological 
reasons. Similarly in the PL category. 

One case is a natural for the extra requirement of embeddability in 
3-space, namely that of positive preassigned curvature on a manifold 
homeomorphic to the two-sphere. In the smooth case one gets this for free. 

The Weyl problem starts with a Riemannian metric of strictly positive 
curvature on a smooth manifold homeomorphic to the two-sphere, 
and asks for a realization by a smooth (necessarily convex) surface in 
3-space. This problem was posed and partially solved by Weyl in 1916 
[43], complete solutions being given by Pogorelov [38] and Nirenberg 
[37]. As a consequence, once a strictly positive curvature function on a 
space homeomorphic to the two-sphere is realized by some Riemannian 
manifold in abstracto, one just appeals to the solution of the Weyl prob­
lem to embed it isometrically in 3-space. 

In the PL case, the corresponding argument misses. The PL version of 
the Weyl problem starts with a PL Riemannian metric of positive curvature 
on a manifold homeomorphic to the two-sphere. One cannot possibly 
begin with strictly positive curvature, because all but finitely many points 
must have zero curvature. The affirmative solution was given by Alexan-
drov [6]. But it has one degenerate case. A doubly covered plane region, 
bounded by a convex polygon, is considered a degenerate case of a closed 
convex surface in 3-space. This degenerate case is unavoidable because it 
exists, and because the corresponding uniqueness result (the Cauchy 
rigidity theorem) applies to it and prevents an alternative nondegenerate 
realization. 

Unfortunately, the solution given in [19] to the converse of the PL 
Gauss-Bonnet theorem lands one exactly on the degenerate case of the 
Weyl problem. The uniqueness aspect of the Weyl problem does not pre­
vent an alternative realization as a nondegenerate closed convex surface 
in 3-space, since here we are interested in realizing only preassigned 
curvature, not preassigned metric. 

An ingenious argument has been given by David Singer [41]. 

(5.1) THEOREM (DAVID SINGER). Let pl9 • • • 9pr be points on a PL 
two-sphere S and kx, • • • 9kr real numbers with 0<ki<27t and 2» k^Air. 
Then there exists a PL embedding of S into Rz with convex image, realizing 
these preassigned curvatures kt at the points p^ and flat elsewhere. 
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(5.2) TETRAHEDRA WITH PREASSIGNED CURVATURE. In order to carry 
out the inductive step of Singer's argument, one needs to know the exis­
tence of tetrahedra with preassigned curvature and base. 

Starting for example with a triangle VXV2V3 in 3-space, one wants to 
extend it to a tetrahedron VXV2V3V^ with curvatures kl9 k29 k39 ké at its 
four vertices, where 0<ki<2ir and 2* ^=477-. If the angles of VXV2V3 

are denoted by al9 a29 a39 then one must assume ki<2iT—2a{ or a solution 
will be impossible. Given this data, however, the desired tetrahedron 
exists and is unique up to reflection through its base. 

The argument, though not difficult, reflects the charm of Alexandrov's 
methods. Parametrize the space of all tetrahedra with base VXV2V3 by 
the numbers xl9 x29 x3 which represent the distance from F4 to Vl9 V29 V3, 
respectively. We are therefore not distinguishing between a tetrahedron and 
its reflection through the base. The curvatures kl9 k29 k3 depend differen-
tiably on xl9 x29 x3 and one may compute the Jacobian determinant of 
this dependence. Somewhat involved at first, the computation yields 
the explicit answer: 

d(kl9 k29 k3) cos(a + ft + y) - 1 

d(xl9 x29 x3) xxx2x3 sin a sin /? sin y 

where a, /?, y are the angles at F4 of the three faces. Since 0<oc+/?+)>< 
2TT9 this Jacobian is always <0. If one regards the set of parameters 
{(xl9 x2, x3)} as the solution space &\ and the set of allowable curvatures 
{(kl9k29k3)}

 a s the problem space &9 then the natural map 9 9 : ^ - ^ 
has nonsingular Jacobian everywhere. Both SP and 0 are homeomorphic 
to open 3-cells, so <p must be an open map. 

To see that cp is also a closed map, Singer argues as follows. Compactify 
the solution space S? by adding "idealized solutions", essentially degen­
erate tetrahedra with control on the angles at each vertex, to form a 
space £? homeomorphic to a closed 3-cell. Similarly, compactify the 
problem space 0* by adding degenerate problems, that is, allowing 
0^fe^27T—2ai9 to form a space ^also_homeomorphic_to a closedj-cell. 
The map q> extends to a map ^ : ^ - ^ , which takes P—Sf to &—0>. 
In other words, degenerate solutions correspond to degenerate problems. 
But the map <p is closed because SP is compact. It follows immediately 
that cp is closed. 

Now 9?G$0 is a nonempty open and closed subset of the connected space 
0>9 hence all of 2P9 and therefore every problem has a solution. 

(5.3) REMAINDER OF SINGER'S PROOF. Using this lemma about tetra­
hedra, Singer constructs a surface bounding a polyhedral 3-cell in Rr~x and 
having preassigned strictly positive curvatures kl9 • • • , kr. The argument is 
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by induction on r, so that the 3-cell is constructed by adding an appro­
priate tetrahedron to a polyhedral 3-cell in Rr~2, which was previously ob­
tained as a solution to a corresponding problem with only r — 1 preassigned 
curvatures. The step in dimensions from r—2 to r—1 is there to prevent 
self-intersections: if the construction is carried out in R3, one cannot 
prove convexity directly by this method, and therefore cannot avoid 
self-intersections during the inductive step. 

The final part of the argument is a surprise. One has just produced by 
the above method a polyhedral two-sphere with preassigned curvatures 
ki> ' * • ? K> but it lies in Rr~x rather than in R3. Now comes an application 
of Alexandrov's solution of the Weyl problem to produce an isometric 
copy of this two-sphere as a convex polyhedral surface in 3-space. The 
problem is to avoid the degenerate case. 

Notice that in a degenerate solution to the Weyl problem, namely a 
doubly covered plane convex polygonal region, each vertex of positive 
curvature can be joined to its immediate neighbor on either side by a 
unique path of shortest length on the surface. But to every other vertex of 
positive curvature it has exactly two shortest paths on the surface, one 
on each sheet. 

Compare this with the two-sphere bounding the 3-cell in ü*""1, which in 
turn was obtained by adding a tetrahedron to a 3-cell in Rr~2. The vertex 
of that tetrahedron is a point of positive curvature on the resulting two-
sphere, and it is joined by straight line paths in Rr_1 to the three vertices 
at its base, all of which represent points of positive curvature on the two-
sphere. Because the model is in Euclidean space, there can be no other 
paths of that same shortest length in the ambient space, let alone on the 
two-sphere. 

It follows that this two-sphere cannot be isometric to any degenerate 
solution of the Weyl problem. But it is isometric to some solution because 
it has positive curvature, so that the solution must be nondegenerate and 
therefore furnishes the required convex two-sphere in 3-space with the 
preassigned curvature. 

(5.4) Robert Connelly has found, by an entirely different method, an 
explicit construction of a convex polyhedral two-sphere circumscribed 
about the unit sphere in 3-space and having preassigned positive curvature. 
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