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1. Introduction. The unit disc furnished with the Poincaré metric pro­
vides a model (the Poincaré model) for the hyperbolic geometry. The linear 
fractional transformations of the unit disc onto itself constitute the group of 
motions. An analogous phenomenon arises in the unit ball of any complex 
Hubert space when it is furnished with the Carathéodory-Reiffen metric. 

The purpose of this note is to announce the hyperbolic version of the 
laws of sines and cosines, and the Pythagorean theorem on the unit ball of any 
complex Hubert space. 

2. Preliminaries. Let X and Y be complex Banach spaces and let 
D C X be a domain (= open connected subset of X). A map f:D-+Y 

is holomorphic if the Fréchet derivative of ƒ at each x € D (denoted by 
Df(x)) exists and is complex linear. Let G be a domain of Y. A map 
f\D—>G is biholomorphic if the inverse map f~l : G —• D exists and 
both ƒ and f~l are holomorphic. A domain D is homogeneous if for 
each pair of points x, x in D there exists a biholomorphic map ƒ : / )—*/} 
with f(x) = x'. 

Let A(£>) denote the class of holomorphic maps of D into the unit 
disc A in the complex plane C. Following [1], we define the Carathéodory-
Reiffen metric by 

aD(x, £) = sup{\Df(x)ï\: f G A(D)}, x G D, $ G X, 

where | | denotes the norm in C. 

The distance pD(x, x') between two points x and JC' in D is defined 
in the usual way. Namely, 
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pD(x, x') = inf j a ocD(y(t), Dy(t)dt), 

where the infimum runs over all piecewise continuously differentiable curves 
7: [a, b] —* D with 7(0) = x, y(b) = x'. 

Consider the unit ball B in the complex Hubert space H furnished 
with the metric aB. For any pair of distinct points x and y in B there 
exists a unique shortest "geodesic" curve joining them. Indeed, it is easy to 
see that for any nonzero vector a £ B the straight line segment a[0, a]: y(t) 
= ta, t E [0, 1] , is the unique shortest geodesic between 0 and a, and the 
length of a[0, a] is given by pB(0, a) = tanh"1 ||<z||. 

The same method used in the proof of Lemma 4.1 of [2] also works in 
this case. The shortest geodesic between any two points a and b in B is 
then determined uniquely by the image curve of the straight line segment 
o[0, T_a(b)] under y = Ta(x). Therefore, any given three points in B 
determine a "geodesic triangle" uniquely. A geodesic triangle consists of three 
sides given by the shortest geodesies and three angles defined as follows. 

First we define the inner product of two vectors £, 77 of H at x G B 
by 

<**(*; t, r?) = afl(0; DT_x(x)H, DT_x(x)r\\ 

while the inner product of £, 7? at 0 G B is given by ocB(0', £, 77) = (£, 7?). 
As usual, the angle H between £ and 77 at x G B is defined by 

cos H = \<xB(x', £, T?)|/aB(x, ^ ( x , r?), 0 < H < TT/2. 

We agree to call the angle 6 defined by cos 6 = |(£, 7?)|/||£|| H77II the 
"Hilbert space angle" between £ and 77. In particular, if x = 0, H = 0. 
Therefore, for each pair of vectors £ and 77 in H and each x G B9 there 
correspond two angles which coincide at 0 E B. 

3. Main results. We now state the main theorems. 

THEOREM 1 (LAW OF SINES). Let av a2 and a3 be the vertices of a 
geodesic triangle A in B whose angle at af is Hv Let gt be the lengths 
of the three sides of A opposite to Hf, i = 1, 2, 3. Then 

sin Hx _ sin H2 _ sin tf3 

sinh gx sinh g2 sinh g3' 
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THEOREM 2 (LAW OF COSINES). Let A be a geodesic triangle in B 
given as in Theorem 1. Then 

cosh g3 = cosh gt cosh g2 - sinh gx sinh g2 cos H3 

holds if and only if ImCT^^), T_aJa2)) = 0. 

In particular, we have 

THEOREM 3 (PYTHAGOREAN THEOREM). Let A be a geodesic triangle 
in B given as in Theorem 1. Then 

cosh g3 = cosh gx cosh g2 

holds if and only if H3 = tf/2. 

The proofs of the above theorems depend on the invariant property of 
the metric aB under the möbius transformations of B, the homogeneity of 
B and the following 

LEMMA. Let H be the angle between two vectors £ and r? in H at 
x G B relative to aB and let 6 be the corresponding Hubert space angle. 
If either % or r\ is expressed by a complex multiple of x, then 

(cos2 0)/cos2 H = 1 - 11*112 sin2 0. 

The explicit forms of the möbius transformations of B and the necessary 
computational machinary are provided in [4] and [5]. The corresponding 
results in the space Cn are already obtained in [2] and [3]. 

Complete proofs of our results and details will appear elsewhere. 
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