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Here we are concerned with the distribution of the zeros of the Riemann 
zeta function f(s) in short intervals in the vertical direction. We establish a 
mean value theorem for the number of the zeros in short intervals and derive 
several consequences from it, in particular, about the difference between the 
ordinates of the zeros and properties of uniform distribution of the zeros. De­
tails will appear later. 

We start from the Riemann-von Mangoldt formula for the number N(t) 
of the zeros of f (s) in 0 < lm s < t9 0 < Re s < 1, where the possible zeros 
on Im s = t are counted with weight one half: 

7V(0 = L(t)+S(t) for t>t0, 

where 

Here 

S(t) = (l/ir) arg tfii + it), 

where arg f(H + it) is defined by continuous variation on the half line o + 
it, o>Vi starting with the value zero if t is not the ordinate of a zero of 
f(s). If the path crosses a zero, we put 

arg f(J4 + it) = Vi {arg f(i4 4- i(t + 0)) + arg f(% + i(t - 0))} 

(cf. [5, 9.2.]). Then the number 

Afctf(f) =N(t + h)-N(t) = L{t + h)- Lit) + S(t + h) - S(t) 

of the zeros of f (s) in a short interval t<Ims<t + h essentially depends 
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on S(t + h) - S(t). We can show, by modifying A. Selberg's approach (cf. [3] ): 

LEMMA. For T>\ and h in 0<h<T-Tl,ie, we have 

f*(S(t + h) - S(t))1 dt = ^ j - r(2 log (3 4- h log T))k 

+ 0((AkfkT • (log(3 + h log T))k-V2) for l = 2k, 

= 0((4A:)3fcr(log(3 4- A log T))k~l) for / = 2* - 1. 

Hence we get a mean value theorem for N(t + h) - N(i) also. 

An immediate consequence of this is a result about the normal density of 
the zeros in short intervals. 

THEOREM 1. If h log T tends to °° as T tends to °°, then 

wfr)to, T<N(t+h)_ N(t) < ^ log r 

/or awy positive increasing function $(7*) wWcft tewds to °° as T tends to 
00 and for almost all (in the sense of the density) t in 0 < t < T. 

For shorter intervals we can show 

THEOREM 2. 

N(' + §r ) ~m > c + Cl(log °y2( log log ° * + e 

/or Ö positive proportion of t in (0, 7), and 

N(<+ i^T") ~^ ( r )< c"~ci ( log ol/2(log log °y2+e 

/or a positive proportion of t in (0, 7"), where e> 0,C> C0, C0 and Cx 

are suitable positive absolute constants. 

If we denote the ordinate of the wth zero of f (s) by yn, where 0 < 
yn < 7„+j, the following is a consequence of Theorem 2. 

COROLLARY. For each r = 1, 2, 3,• • • a positive proportion of yn's 
satisfy 

?„+,-?„ log 7,. 
r 27T 

ûwrf fl&o a positive proportion of y„s satisfy 

< 1-A, 
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yn+r-yn !°87» , . A 

— ; ïT>1+A> 
where A is a positive absolute constant less than 1 which may depend on r. 
In fact we can take A = exp(- C2r

2) with a positive absolute constant C2. 

Also from our Lemma we see 

THEOREM 3. 

Y (y -y)<ATl0^3^hl%^ 
0<yn<T;yn+l-yn>h \n log 1 ) 

uniformly for a positive h, and 

T 
Z (%.+i -%,) a <^- l 0 R r , 

0<yn<T 10& i 

where A's are positive absolute constants. 

About the property of uniform distribution of the 7w's we can show 

THEOREM 4. If h log T tends to °° as T tends to °°, then 

l £ ' ( A ^ -aàh)N(mh) = o(N(T)) 
m = 0 

for each a in 0 < a < 1. 

In particular, if h = 1, this implies {yn : n = 1, 2, • • • } is uniformly 
distributed mod 1. 

From a mean value theorem of AhN(t)i we can get some information 
about the multiplicities of zeros. Namely, we can show 

THEOREM 5. For any j in 1 < ƒ < Vlog T, we have 
oo 

Zj2kNj(T)<CN(T) for T>T0, 

where N^T) is the number (counted without multiplicity) of zeros of f(s) in 
0 < l m s < r , 0 < Re s < 1 with the multiplicity exactly ƒ. 

From this we see 

COROLLARY. 

for K > K0, A and K0 are suitable positive absolute constants. 
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Finally we may remark here that the results in this paper have been ex­
tended to Dirichlet //-functions and also to Dirichlet series attached to cusp 
forms under certain hypotheses, ^-analogues of this paper have been also 
obtained. These will also appear later. 
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