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Suppose R is a ring with identity element and k is a positive integer. 
Let J(k, R) denote the subring of R generated by its kth powers. If Z 
denotes the ring of integers, then G(k, R) = {a G Z: aR C J(k, R)} is an 
ideal of Z. 

Let Z[x] denote the ring of polynomials over Z and suppose aGR. 
Since the map p(x) —• p(a) is a homomorphism of Z[x] into R9 the well-
known identity (see [3, p. 325]) 

(1) k\x = k£ (- I)*"1"' (kJ1){fy+ if - ik} 
z=0 ^ ' 

in Z[x] tells us that k\ e G(k, Z[x]) C G(k, R). Since Z is a cyclic group 
under addition, this shows that G(k, R) is generated by its minimal positive 
element, which we denote by m(k, R). Abbreviating m(k, Z[x]) by m(k), 
we then have m(k, R)\m(k) and m(k)\k\. 

Thus m(k) is the smallest positive integer a for which there is an 
identity of the form 

(2) ax = 2>*W*)1* 

where a%9 • • • ,aneZ and gx(x), • • • ,gn(x) G Z[x]. 
On differentiating (2) with respect to x we have k\m(k). Thus if R 

is any ring with identity, 

(3) k\m{k\ m(k, R)\m(k), and m(k)\k\. 

For any k > 1 in Z, let Px(k) denote the set of primes less than k 
that divide k, and let P2(k) denote the set of primes less than k that fail 
to divide k. If p is a prime and r > 1, m > 1 are integers, then a number 
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of the form (pmr - l)/(pr - 1) is called a p-power sum. We adopt the con­
vention that the product of an empty set of integers is 1. The main theorem 
of this paper is the following. 

THEOREM 1. If k is a positive integer then 

where 

(a) 

(b) 

(c) 

:(*) = kU{pakiP): p G P 1 (* ) }n{ /* ( P ) : p G P2(k)} 

<*k(p) = 1 if P is odd. 

\l if (2' - l)|Ar for some ƒ > 2, 
«*<2) = 

hiP) = 

1 otherwise. 

11 if some p-power-sum divides k, 

10 otherwise. 

A proof of this theorem will appear in [2] . Appropriate identities are 
developed in various homomorphic images of Z[x] and lifted. Except for 
(b), these homomorphic images are Galois fields. A constructive but imprac­
tical algorithm is developed for obtaining identities of the form (2) with a = 
m(k). The reader may easily verify the entries in the following table of 
values of m(k)/k for 1 < k < 20. 

k I 1 I 2 I 3 I 4 15 1 6 17 

12 

m{k)lk I 1 I 1 I 2 I 2-3 = 6 I 2 I 4 -3-5 = 60 

8 10 11 
m(k)/k I 2-3-7 = 42 I 2-3 = 6 I 2-3-5 = 30 I 1 I 4-3-5-11 =660 

13 14 15 16 117 18 
m(k)/k\ 3 |4-7-13 = 364 2-3-5 = 30 2-3-7 = 42 1 2 14-3-5-17= 1,020 

19 20 
m(k)/k | 1 | 2 -3-5-19 = 570 | 

A table of values for m(k)/k for 1 < k < 150 is supplied in [2] to­
gether with an algorithm for computing values of m(k)/k efficiently. 

If T is any set of primes, let 5(F) denote the multiplicative semigroup 
generated by T. Let 7X0 denote the set of a > 1 in Z for which 
there is a d > 1 in Z such that (ad - l)/(a - 1) G S(r). 

The next theorem yields some information about the distribution of 
values of m(k)/k. Recall that a prime is called a Mersenne (resp. Fermât) prime 
if p = 2" - 1 (resp. p = 3 or p = 2" + 1) for some integer n > 1. 
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THEOREM 2. Suppose T is a finite set of primes. 
(a) T(T) is the union of a finite set and {a G Z: a > 1 and (a + 1) G 

SÇT)}. 
(b) /ƒ S(r) contains no even integer, then {a G T(F): a is odd} is 

finite. 
(c) If 2 £ T, rtew {m(k)/k: k E S(T)} » bounded. In particular, if 

k > 1 ft aw ocW integer, then {m(fc/,)/fc',} is a bounded sequence. 
(d) If n > 1 & <w integer, then m(2n)/2n is the product of all the 

Mersenne primes less than 2n. 
(e) If p is a Fermât prime, then m(pn)/pn = 2p for every integer 

n>\. 

A proof of Theorem 2 is given in [2]. 
We conclude with some remarks and unsolved problems. 
(A) P. Bateman and R. M. Stemmler show in [1, p. 152] that if {pn} 

is the sequence of primes such that pn is a q -power sum for some prime q> 
where pn is repeated if it is a q -power sum for more than one prime q9 then 
2~ = 1 p~ % < °°. Hence such primes are sparsely distributed. Indeed, they 
state that there are only 814 such primes less than 1.25 x 1010 , and they 
exhibit the first 240 of them. In this range 31 = (26 - l)/(2 - 1) = 
(53 - l)/(5 - 1) is the only prime that is a q-powei sum for more than one 
prime q. For any prime p9 m(p)/p is the product of all primes q such 
that p is a #-power sum. It does not seem to be known if there is a positive 
integer N such that m(p)/p has no more than N prime factors for every 
prime p. 

(B) Can the sequence {mCif2)/^} be bounded if k is even? By 
Theorem 2 (d), {m(2n)/2n} is bounded if and only if there are only finitely 
many Mersenne primes. What if Ar is even and composite? 

(C) By Theorem 2 (c), if T is a finite set of odd primes, then there 
is a smallest positive integer M(T) such that m(s)/s < MQT) for every 
s G SÇT). By Theorem 2 (e),M(T) = 2p if T = {p} and p is a Fermât 
prime, and since (11)2 = (35 - l)/(3 - 1), M({11}) > 33. Is there a general 
method for computing M(T)1 What if \T\ = 1? 

(D) It is not difficult to prove that if R is a ring with identity for 
which there is a homomorphism of R onto Z[x], then m(k, R) = m(k). 
In particular, if {xa} is any collection of indeterminates, then m(k, Z[{xa}]) 
= m(k). 
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