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SOME PROBLEMS OF MATHEMATICS AND SCIENCE1 

BY R. J. DUFFIN 

Introduction. The development of mathematics has often been aided 
by the use of models from science and technology. There are three main 
reasons why models help: (i) attention is focused on significant problems; 
(ii) the intuition is aided in perceiving complex relations; (iii) new con­
cepts are suggested. This paper describes problems arising from models 
which have interested me. The models come from physics, chemistry, 
engineering, and economics. 

1. The Dirichlet problem for the wave equation. We are given two 
photographs of a vibrating string, one at time t=0 and another at a later 
time r=a, as illustrated in Figure 1. Is it possible to determine the state 

/ \ 

FIGURE 1. The vibrating string 

at intermediate times? This puzzle led David Bourgin and me to study 
the Dirichlet problem for the wave equation. The wave equation is 

d*yjdx* = d2yldt* 
and the region of concern is the rectangle R, O^x^ l , Or^^oc. There are 
solutions of the form y—sm(7rnx)sin(7rnt) for any integer n. Then if a is 
a rational number, say oc=m/«, it is seen that given y at 7=0 and /=a 
does not determine y at intermediate times. On the other hand, we found 
that if a was irrational and y was of class C2 in the rectangle R, then y 
was uniquely determined. 
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Thus the irrationality of a established the uniqueness of the Dirichlet 
problem. To establish existence we had to assume that a could not be 
approximated too rapidly by rationals. For example suppose that for 
suitable positive constant A and integer k, \oc—mln\>Alnh for all integers 
m and n. Thus if the values of y at times f=0, t=oc are functions of class 
C3+fc, then there exists a solution of the wave equation at intermediate 
times. It is of interest to note that the above inequality holds if a is an 
algebraic number of degree k. 

This mathematical problem which we solved was inspired by the 
physical model of a vibrating string. However it is not clear what the 
mathematical solution really implies for the physical situation. Thus 
what is the physical significance of the statement that a time interval may 
be an irrational number but not a rational number? 

1. D. G. Bourgin and R. J. Duffin, The Dirichlet problem for the vibrating string 
equation, Bull. Amer. Math. Soc. 45 (1939), 851-858. MR 1, 120. 

2. Heavy Photon. Maxwell's equations give the wave equation for 
the photon. The photon has zero rest mass. Proca proposed the following 
modification of Maxwell's equations for a particle of rest mass ra, 

/ n dq>, dq>i ^dfu 

Here JLL2= —m2c2 and xl= —c2t2. These equations are somewhat unwieldy 
to manipulate. Taking a hint from Dirac, I found that the system of 
linear equations (1) may be expressed as a single vector wave equation 

(2) EAfS = W. 
Here tp is the column vector with ten components 

(3) W = (q>l9 y*, 9?3> <P^f\vfmfwh*4z\J\è> 

and /?!, /?2, /?3, and /J4 denote 10 by 10 constant matrices. They were found 
to satisfy the following identities 

(4) p>=*pt, Afl + #ft = A, A/?A + AAA = o. 
These have since been termed the Duffin, Petiau, Kemmer commutation 
relations. Let 

(5) Lu = ( X i ± - X i ± \ - (-iy>HSti, 
\ OXj OXj 

where *S'^=/?^— fa fa. Then the angular momentum operator L{j is seen 
to commute with the operator of equation (2). Moreover the matrix 
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(—1)1/25^ has eigenvalues 1, 0, and — 1. The physical interpretation of 
this is that the Proca particle has spin 1. 

There are various other properties of the /9 matrices: If the /S are trans­
formed as components of a four vector, then the commutation relations 
are invariant under a Lorentz transformation. Again the /? generate an 
interesting semisimple algebra. 

The conclusion to be drawn from this study is that the matrices implicit 
in a system of partial differential equations may give rise to an algebraic 
formalism both elegant and significant. 

1. R. J. Duffin, On the characteristic matrices of covariant systems, Phys. Rev. 
54(1938), 1114. 

2. , On wave equation vector-matrices and their spurs, Phys. Rev. (2) 77 (1950), 
683-685. MR 11, 543. 

3. Bernstein inequality for nonanalytic functions. The following 
theorem of S. Bernstein plays a central role in approximation theory. 

A. Let p(x) be a trigonometric polynomial of degree n, 

n 

p(x) = 2 (av C0S VX + fry S i n VX)' 
0 

If \p(x)\^l for allx, then \dp/dx\^n. 

It seemed desirable to extend this theorem to nonanalytic functions. 
To do this Albert Schaeffer and I proved the following theorem. 

B. Let f be a function such that for some integer m and for all x, 

{/(*)}2 Û 1, {/ ( w )0)}2 + {f{m~1}(x)}2 ^ 1. 

Then for k—\, 2, • • • , m, 

{fk)(x)Y + { /^O)} 2 ^ l. 

The proof begins by considering the case m=2 . Consider the function 

cp{x) = {f(x)Y + {f(x)Y. 

If cp(x)^l does not hold, then <p has a local maximum at some point 
x0 and (p(x0)>l. Thus (p\x0)=2f,(x0){f(x0)+fff(x0)}=0. If the first 
factor is zero, then <p(x0)={f(x0)}

2^l. If the second factor is zero, then 
<p(;c0)={—f"(x0)}

2+{f'(x0)}
2^l. This contradiction proves the theorem 

in the case m=2. The proof is completed by induction. 
Theorem B proves Bernstein's inequality. To see this let f(x)=p(x/X) 

where A is some constant greater than n. It follows that as m->co,f{m)(x)->-
0 uniformly. Thus for m sufficiently large, the conditions of Theorem B 
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are satisfied so 
l ^ !ƒ'(*)! = \p'(xlX)[X\. 

Allowing À~>n shows that \p'\<n. Q.E.D. 

1. R. J. Duffin and A. C. Schaefïer, On the extension of a functional inequality of 
S. Bernstein to non-analytic functions, Bull. Amer. Math. Soc. 46 (1940), 356-363. 
MR 1, 205. 

4. A refinement of MarkofFs inequality. The following theorem of 
A. Markoff plays an important role in approximation theory. 

Let p(x) be a polynomial of degree n, 

n 

P(X) = 2 aix*-
0 

v 
(a) \p(x)\ ^ 1 f o r - l ^ x ^ l , 

then \p'(x)\^,n2 in the same interval. 

Albert Schaeffer and I found a refinement of this theorem to the effect 
that the conclusion holds when (a) is replaced by the weaker condition 

(a*) \p(cos kTTJn)\ ^ 1 for k = 0, 1, • • • , n. 

The proof employed rather involved complex variable techniques. 
In recent years a more general approach to such problems has been 

developed by use of functional analysis. Is it possible, by such methods, 
to extend the refined Markoff inequality to a wider class of functions? 

1. R. J. Duffin and A. C. Schaeffer, A refinement of an inequality of the Brothers 
Markoff, Trans. Amer. Math. Soc. 50 (1941), 517-528. MR 3, 235. 

5. Representation of Fourier integrals as sums. Fourier integrals 
are an indispensible tool in almost all branches of applied mathematics. 
Since these integrals are difficult to evaluate numerically, I sought to 
replace the integrals by series. 

Given an arbitrary function <p(x), let functions f(x) and g(x) be defined 
by the sums : 

(la) f(x) = <p(x) - (l/3)?(x/3) + (l/5)rt*/5) , 

(lb) g(x) = (1/xMl/x) - (l/x)9>(3/x) + (l/x)<K5/x) . 

Then/(x) and g(x) are Fourier sine transforms; that is, 

(2a) g(x) = J sin(7TXf/2)/(f) dt, 
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(2b) f(x) = sin(7TX*/2)g(0 dt, 
Jo 

under mild restriction on q>. 
An intuitive proof of this can be based on the well-known Poisson sum­

mation formula for the sine transform, 

(3) ƒ(*) - /(3x) + /(5x) = - g ( - ) - - g ( - ) + - g(-) •••. 
X \X/ X \X/ X \X/ 

This holds for sine transform pairs (ƒ, g). If (la) and (lb) are substituted 
in (3), it is seen that both sides reduce to 

(4) n^A-X 
i i n \ n J 

where a x = l , a2—0, a 3 = — 1, etc. Since x is arbitrary, this is an indication 
of the validity of (1) and (2). 

The left side of (3) is a Möbius series M(x), 

(5) M(x) = f(x) - f(3x) + f(5x) . 

The inversion of this series is 

(6) f(x) = M(x) - jUaM(3x) + ju5M(5x) - • • • , 

where jun is the well-known Möbius symbol. Applying this inversion to the 
right side of (3) gives 

(7) fix) = f fe&2sg(!!L\ 
n=i m=\ nx \nx) 

This is a direct representation of the Fourier sine transform as a double 
sum. 

1. R. J. Duffin, Representation of Fourier integrals as sums. I, Bull. Amer. Math. Soc. 
51 (1945), 447-455. MR 6, 266. 

2. , Representation of Fourier integrals as sums. II, Proc. Amer. Math. Soc. 
1 (1950), 250-255. MR 11, 592; MR 12, 1002. 

3. 9 Representation of Fourier integrals as sums. I l l , Proc. Amer. Math. Soc. 
8 (1957), 272-277. MR 18, 893. 

4. H. F. Weinberger, Fourier transforms of Mobius series, Ph.D. Thesis, Carnegie-
Mellon University, Pittsburgh, Pa., 1950. 

6. Hadamard's conjecture on the clamped plate. The following con­
jecture was made by Hadamard in his 1908 prize memoir on the elastic 
plate. 

(A) If a perpendicular force is applied at some point of a thin, flat, 
elastic plate which is rigidly clamped on its boundary then the displacement 
of the plate is of one sign at all points. 



1058 R. J. DUFFIN [November 

Suppose that the plate is in the (x, y) plane, then a displacement w(x, y) 
of the plate satisfies the biharmonic equation 

(1) (92/9x2 + d2/dy2)2w = 0 

in a region R where no forces are applied. By an argument appealing to the 
reciprocity principle (conservation of energy), it may be shown that 
Hadamard's conjecture is equivalent to the following assertion. 

(B) Suppose a function w is biharmonic in a region R, and that on the 
boundary w§:0 and — 9vv/5#^0, where n is the exterior normal. Then 
w"§:0 throughout R. (This statement could be interpreted as a maximum 
principle for biharmonic functions.) 

The assertion (B) is false, as the following counterexample shows. 
First it is observed that if q is any complex constant, then eiqx sinh qy 
and eiqx cosh qy are both harmonic functions. Moreover if h is a harmonic 
function, y h is biharmonic. Thus 

ƒ = eiqx{—cosh qy + y coth q sinh qy) 

is a biharmonic function. If ^=1.12+/2.10, then ^+cosh^rsinh^=0, 
and it is easy to check that f=0 and df/dy—0 on the lines j = ± l . Let 
w=Re( / ) . Then w(x,0)==—e~~21x cos\A2x, so ƒ has nodal lines which 
intersect the x axis at 1.12x=7r/2+m7\ Let the region R be bounded by 
the lines j = ± l and the nodal lines which intersect the x axis at 1.12x= 
±3TT/2. 

y 
X. 

+ i 

- il 
FIGUKb 6. The clamped stiip 

Then R is divided into three congruent sections as is shown in the figure. 
Then w^O in the central section and w^O in the others. Thus w=0 
and —dwjdn^O on the boundary of R. However w(0, 0)<0, and this 
contradicts statement (B). Hence statements (A) and (B) are both false. 

The question still remained of whether or not there is any correct analog 
of the maximum principle for the biharmonic equation. The following is 
one such principle : 

(C) Let w be biharmonic in a region R, let (a, b) be a point in R, and let 
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r be the vector with components x—a,y—b. Then 

w(a, b) ^ max[w — r • Vw + r2 Aw/4] 
dR 

where dR denotes the boundary of R. 
PROOF. A short calculation shows that if w is biharmonic, then 

w—r - Vw+r2Aw/4 is harmonic. Thus the inequality follows from the clas­
sical maximum principle. 

Presumably such maximum principles for biharmonic functions could 
have applications in elasticity. 

1. R. J. Duffin, On a question of Hadamard concerning super-biharmonic functions, 
J. Mathematical Phys. 27 (1949), 253-258. MR 10, 534. 

2. , The maximum principle and biharmonic functions, J. Math. Anal. Appl. 
3 (1961), 399-405. MR 26 #1617. 

7. Szegö's conjecture on the clamped plate. The normal modes of 
vibration of a clamped plate satisfy the biharmonic wave equation 

(1) A2u> = Ww. 

The boundary conditions are, of course, 

(2) w = 0, dwjdn = 0. 

Szegö assumed that the gravest mode of vibration is free of nodal lines. 
Under this hypothesis he proved that of all plates of a given area, the 
circular plate has the gravest tone. 

Studies made in collaboration with Alfred Schild and Douglas Shaffer 
indicate that Szegö's conjecture is not universally valid. In particular 
we solved equation (1) for a ring-shaped plate. In this geometry the wave 
equation is separable, and solutions have the form 

(3) w =fn(r)cosnd. 

The radial part fn(r) is of the form 

(4) fnir) = aJn(Xr) + b Yn(Xr) + dn(Xr) + dKn{lr\ 

where Jn, Yn, In, and Kn are standard notation for the Bessel functions. 
The constants a, b9 c, d are chosen to satisfy the boundary condition (2) 
on both the inner and outer circles. 

We found that if the outer circle had a diameter of over 715 times the 
diameter of the inner circle, then the gravest mode of vibration has a 
diametral nodal line. This corresponds to n=l in equation (3). We also 
found the conjecture to be false in a simply connected domain. 

1. G. Szegö, On membranes and plates, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 
210-216. MR 11, 757. 
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2. R. J. Duffin and D. H. Schaffer, On the modes of vibration of a ring-shaped plate, 
Bull. Amer. Math. Soc. 58 (1952), 652. 

3. R. J. Duffin, Nodal lines of a vibrating plate, J. Mathematical Phys. 31 (1953), 
294-299. MR 14, 601. 

4. R. J. Duffin and A. Schild, The effect of small constraints on natural vibrations, 
Proc. Sympos. Appl. Math., vol. 5., McGraw-Hill, New York, 1954, pp. 155-163. 

5. , On the change of natural frequencies induced by small constraints, J. Math. 
Mech. 6 (1957), 731-758. MR 19, 1101. 

8. The Wang algebra of networks. Consider a network of electrical 
conductors such as shown in the figure. To determine the joint conductance 
of the network, one could set up Kirchhoff's equations and solve for the 
current flow through the battery. 

K. T. Wang managed an electrical power plant in China, and in his 
spare time sought simple rules for solving the network equations. Wang's 
rules were published in the reference indicated below [5]. Wang could not 
write in English so his paper was actually written by his son, then a college 
student. Raoul Bott and I recognized that Wang's rules actually define 
an algebra. We restated the rules as three postulates for an algebra: 

xy = yx, x + x = 0, xx = 0. 

- W ? V\A 

2 
FIGURE 8. A simple network 

To apply the Wang algebra to the network shown, let the conductances 
of the various branches be a, b, c, d and e. Also regard these symbols as 
independent generators of a Wang algebra. A star element of the algebra 
is defined as the sum of the branches meeting at a node. Thus the star 
element at node 3 is a+b + c. 

An algorithm for finding the joint conductance between nodes 1 and 2 
follows. First form P, the Wang product of all star elements except those 
at nodes 1 and 2. Thus 

P = (a + b + c)(c + d+e). 

Using the postulate (iii) gives 

P = ac + ad + ae + be + bd + be + cd + ce. 
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Next form the Wang product T of all stars except one. Then 

T = aP = abc + abd + abe + acd + ace. (All trees !) 

Then the joint conductance K between nodes 1 and 2 is given as the ratio 

_ T^ abc + abd + abe + acd + ace 

P ac + ad + ae + be + bd + be + cd + ce 

The Wang algebra has interesting and important connections with 
matroid theory, totally unimodular matrices, and Grassmann algebra. 
In fact Wang algebra is Grassmann algebra over the mod 2 field. The 
trees of any graph are given by the above algorithm for T. 

1. R. Bott and R. J. Duffin, On the Wang algebra of networks, Bull. Amer. Math. 
Soc. 57 (1951), 136. 

2. , On the algebra of networks, Trans. Amer. Math. Soc. 74 (1953), 99-109. 
MR 15, 95. 

3. R. J. Duffin, An analysis of the Wang algebra of networks, Trans. Amer. Math. 
Soc. 93 (1959), 114-131. MR 22 #49 . 

4. 9 Network models. Mathematical Aspects of Electrical Network Theory, 
SIAM-AMS P r o a , vol. 3, Amer. Math. S o c , Providence, R.I., 1971, pp. 65-91. 

5. K. T. Wang, On a new method of analysis of electrical networks, Memoir 2, 
National Research Institute of Engineering, Academia Sinica, 1934. 

9. Sampling of particle size by planar sectioning. In some aluminum-
silicon alloys, most of the silicon is distributed as small particles throughout 
an aluminum matrix. It is of importance in metallurgy to know the dis­
tribution of particle size. However it is very difficult to observe directly 
the size distribution. Instead, linear or planar samples are observed from 
a cross section of the alloy as shown in the figure. The problem thereby 
posed is the determination of the true size distribution of the particle 
from the observation of linear or planar samples. 

r> \°o( 
P/-~x 

.o_ P ^O 
yc:: 

T6 
OT 
\ ° ° 

linear 
section 

S 

FIGURE 9. A planar section of particles 
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In a study made in collaboration with Russell Meussner and Frederick 
Rhines, it was found that if the particles are assumed to be spherical, 
then the size distribution of linear or planar sections is related to the true 
size distributions by certain integral equations. These integral equations 
are analogous to Abel's equation and the fractional integration of Herman 
Weyl [1] and it proved possible to obtain the resolvent kernels. 

The following distribution functions were related: 
(a) The sphere distribution function G%(s) is the average number of 

spheres per cubic centimeter having diameter greater than s. 
(b) The circle distribution function G2(s) is the average number of 

circles per square centimeter having diameter greater than s. The circles 
are the intersection of a plane with the spherical particles. 

(c) The segment distribution function G±(s) is the average number of 
segments per centimeter having length greater than s. The segments are 
the intersection of a line with the spherical particles. 

THEOREM 1. The cumulative distribution functions are related by the 
following Stieltjes integrals: 

(la) G2(s) 

(lb) G3(s) 

(2a) GX(S) 

(2b) G3(s) 

(3a) GJUS) 

(3b) G2(5) 

A distribution function may be termed Gaussian if it has the form 
G(s)=A exp(—ks2), where A and k are constants. (This is not the same 
as the Gaussian density function.) 

THEOREM 2. If any two of the distribution functions Gl9 G2, and G3 are 
proportional, then they are all Gaussian, If any one of them is Gaussian, 
all are Gaussian. 

The proof of Theorem 2 follows from the relations of Theorem 1. 

1. G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge, 1934, 
pp.245, 290. 

= - j\n2 ~ s2f2 dGz(n), 

= _ 2 f"(n»_ s«)-i/»dG a(i i) , 
TT Js 

4 Js 

= -(21 ITS) dGJds, 

= -^(n'-sfdGJn), 

= -- fV-s2)-172^^). 
7T J s 
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2. R. A. Meussner, The growth of silicon particles in an aluminum matrix during iso­
thermal heat treatment, Thesis, Carnegie-Mellon University, Pittsburgh, Pa., 1952. 

3. R. J. Duffin, R. A. Meussner and F. N. Rhines, Statistics of particle measurement 
and of particle growth, Carnegie-Mellon University, Technical Report 32, April 1953. 

10. Rayleigh quotient for dissipative systems. Consider a mechanical 
system of «-degrees of freedom vibrating about a position of static equi­
librium. If the vibrations are small then Newton's equation can be written 
in the linear form 

A(d*Qldt*) + CQ = 0, 

where A and C are n by n symmetric positive definite matrices of constants. 
A normal mode of motion is of the form Q=qeiwt

9 where the vector q is 
independent of the time, and w is the frequency of vibration. Thus 
w2Aq—Cq=0. The Rayleigh quotient is 

R = [c(v)la(v)Y'*9 

where a and c are the quadratic forms (Av, v) and (Cv, v). The minimum 
frequency satisfies the relation 

w = mm[a(v)/c(v)]1/2 

V 

for arbitrary real vectors v. The maximum frequency satisfies a similar 
relation. 

When frictional forces are introduced, Newton's equations take the 
form 

dt2 dt 

where B is also a symmetric positive definite matrix. Again let a(v), 
b(v), and c(v) denote the corresponding quadratic forms. A solution of 
the form qe~kt satisfies the relation k2a(q)—kb(q)+c(q)=0. To make sure 
that k was real, I defined an over damped system by the relation 

b2(v) - 4a(v)c(v) > 0 

for arbitrary real vectors v. The nonlinear eigenvalue k corresponds 
to a motion of exponential decay (like radioactivity). It was found that 
the correspondent of the Rayleigh quotient is the functional 

R(v) = (b ± (b2 - 4ac)1/2)/2a. 

Then the largest decay constant is given by 

(b + (b2-4ac)1/2\ 
k = max I. 

v \ 2a J 
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The smallest decay constant satisfies 

. (b - (ft2 - 4ac)1/2\ 
k = mini I. 

v \ 2a J 

A similar theory holds when the frictional forces are replaced by 
gyroscopic forces. Then the matrix B is skew symmetric. 

1. R. J. Duffin, A minimax theory for overdamped networks, J. Rational Mech. 
Anal. 4 (1955), 221-233. MR 16, 979. 

2. 1 The Rayleigh-Ritz method for dissipative or gyroscopic systems, Quart. 
Appl. Math. 18 (1960/61), 215-221. MR 22 #12775. 

11. Optimization of cooling fins. A common problem of heat transfer 
is the design of machinery so that the structure can dissipate excess heat. 
For example cooling fins are used on cylinders of air-cooled engines as 

FIGURE 11. Cooling fin cross section 

shown in the figure. Suppose for such an example that the fin is not per­
mitted to exceed a given weight. It is not difficult to see that the fin should 
taper, narrowing in the direction of heat flow. The optimum design prob­
lem arising may be phrased in this way—find the taper, a thickness 
function p(x), which gives the maximum dissipation of heat for a given 
weight of fin. 

If the fin is of constant width, the weight of the fin is proportional 
to $fp(x) dx, where L is the length of the fin. The heat dissipated to the 
air is proportional to J^ u(x) dx, where u(x) is the temperature of the 
fin relative to the air. Of course, u has a prescribed value uQ on the cylinder, 
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x=0. If the fin is thin the equation of heat conduction has the form 

d ( , .du\ 
dx\ dxj 

where c is constant. 
Conceivably this problem could be treated by solving the differential 

equation for various choices of p and L and retaining the best solution. 
Such an approach would be very difficult to implement. Instead the 
differential equation was regarded as the Euler equations of a variational 
problem. Then a grand variational problem was set up in which both the 
temperature function u and the taper function/? were variables. The Euler 
equation for this grand variational problem proved to be very simple. 
The condition on the temperature was simply that the temperature gradient 
should have constant magnitude at all points of the fin. This relation greatly 
simplifies the equation of heat conduction. It then results that the taper/? 
is obtained by quadrature and the design problem is completely solved. 

The above condition on the gradient was first obtained for the above 
special geometry. Later more general models were used and the same 
criterion was found to hold. The gradient condition might be stated as a 
"democracy" criterion thus: To obtain the maximum dissipation of heat 
from a cooling fin o f a given weight, the fin should he so proportioned that 
each part of the fin carries the same heat current. 

1. R. J. Duffin, A variational problem relating to cooling fins, J. Math. Mech. 8 
(1959), 47-56. MR 21 #2477. 

2. R. J. Duffin and D. K. McLain, Optimum shape of a cooling fin on a convex 
cylinder, J. Math. Mech. 17 (1968), 769-784. 

3. R. J. Duffin, Optimum heat transfer and network programming, J. Math. Mech. 
17 (1968), 759-768. 

4. S. Bhargava and R. J. Duffin, Network models for maximization of heat transfer 
under weight constraints, Networks 2 (1972), 355-365. 

5. , Dual extremum principles relating to cooling fins, Quart. J. Appl. Math. 
31 (1973), 27-41. 

12. Prediction algorithms based on discounted least squares. In applied 
science it is often required to make extrapolations into the future based on 
observations obtained at regular time intervals in the past. A standard 
approach to such a problem is to extrapolate with a polynomial fitted to 
the data by least squares. 

Theodore Schmidt and I were presented with such a situation where 
the observations of the distant past should be given less weight than those 
more recent. This discounting can be achieved by use of an exponential 
weight factor. Thus suppose that yl9 y2, yz, • • • is a sequence of real num­
bers giving the observation at previous times x=l9 2, 3, • • • . The central 
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problem is to predict y0, the value at x=0. Letp(x) be a polynomial, say 

p(x) = a + bx + ex2. 

Then the coefficients are chosen to minimize 

E = % 6n[yn - p(n)f. 
n=l 

Here the constant Ö<1 is the discount factor. Then the predicted value 
of jo is defined as y*=p(0). 

When the minimization is carried out, a "long formula" of the following 
type results : 

00 

y* = 2 Ôrjv 

Here the constants Qn can be obtained explicitly. However there is a 
much better algorithm termed "the short formula" given as 

yS = 3(yx + 6ÔJ - 3(y2 + 02<52) + (y3 + 6%). 

Here ôk=y%—yk, where y* is the predicted value based on the previous 
values Jfc+i> Jfc+2> • • • . Thus the short formula gives the predicted value of 
y in terms of the last three observed values and last three predicted values. 

More generally if p(x) is a polynomial of degree m— 1, then the short 
formula is 

Here (f) is the binomial coefficient. 
For some applications it seemed desirable to use trigonometric poly­

nomials or exponential polynomials instead of algebraic polynomials. 
Then it again proves possible to have a short formula 

m 

y£ = - 2 ( w>+* + /^'<W-
Here the coefficients gi and fi are given by explicit formulae involving 
the polynomial terms. 
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Appl. 1 (1960), 215-227. MR 22 #11510. 
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5. R. J. Duffin, Extrapolating time series by discounted least squares, J. Math. Anal. 
Appl. 20 (1967), 325-341. MR 36 #1078. 

13. Convolution products. The points of the complex plane with 
integer coordinates form a lattice which breaks up the plane into unit 
squares. A function/is said to be discrete analytic on one of these squares 
if the difference quotient across one diagonal is equal to the difference 
quotient across the other diagonal 

f(z + 1 + Q - / ( z ) J { z + Q - / ( z + 1) 

i + 1 i - 1 

This definition was introduced by Rufus Issacs and Jacqueline Ferrand 
(Lelong). This definition leads directly to difference equation analogs of 
the Cauchy-Riemann equations and the Laplace equation. Many of the 
theorems of continuous function theory can be extended to this discrete 
function theory. 

If/(z) and g(z) are two analytic functions, then their product f(z)g(z) 
is also an analytic function. This important property does not seem to 
carry over to discrete function theory in any simple way. However there 
is another type of product in the classical theory termed the convolution 
and defined as 

f(z) * h(z) = ƒ (z - w)g(w) dw. 
Jo 

The integration is performed along any contour connecting 0 and z. 
Charles Duris and I found that the same formula gives a product of two 
discrete analytic functions if the integral is interpreted in the following 
way. The contours are restricted to the lattice lines. Thus a contour is 
made up of unit line segments. The value of a discrete function at a point 
of the line segment is defined to be the average of the values at the end 
points. Thus the convolution product becomes the sum 

w=l 2 2 

where 0=z 0 , zl9 z2, • • • , zm=z is a chain of lattice points. 
The convolution product of discrete analytic functions is again a 

discrete analytic function. The product is both commutative and associ­
ative. Thus the convolution product yields an algebra for discrete function 
theory. 

These algorithms can be extended to arbitrary partial difference equa­
tions with constant coefficients in the plane. With each such partial dif­
ferential equation, Joan Rohrer and I associated a convolution product. 
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Given any two solutions of the partial difference equation, the convolution 
product is again a solution. 

1. R. J. Duffin and C. S. Duris, A convolution product for discrete function theory, 
Duke Math. J. 31 (1964), 199-220. MR 29 #429. 

2. R. J. Duffin and Joan Rohrer, A convolution product for the solutions of partial 
difference equations, Duke Math. J. 35 (1968), 683-698. MR 39 #1831. 

14. Convexity and chemical equilibrium. Consider a mixture of gases 
in a reaction chamber and suppose that the temperature T and pressure P 
are maintained constant. Then according to Gibbs, the mixture is in 
equilibrium if the free energy G is a minimum. For example consider the 
chemical reaction 

(1) 2H2 + 0 2 = 2H20 (steam). 

Let x1 be the number of molecules of H2, x2 be the number of molecules 
of 0 2 , and x3 be the number of molecules of H 20. If it is assumed that 
there is only a negligible number of other types of molecules present, 
then G=G(xl9 x2, x3). This function is to be minimized subject to the 
mass balance constraints 

(2) 2x! + 2x3 = el9 2x2 + xz = e2. 

Here ex is the total number of hydrogen atoms in the chamber, and e2 

is the total number of atoms of oxygen in the chamber. Thus the equilib­
rium state is obtained by minimizing G subject to the mass balance con­
straints. 

To obtain the form of the free energy function G, chemists assume the 
perfect gas laws of Boyle, Charles, and Dalton. Then G is given as a 
definite logarithmic formula involving constants which chemists determine 
experimentally. Moreover, it is found that G(x) so evaluated is a convex 
function. Thus, in modern terminology, the Gibbs procedure is termed a 
convex program. 

As is well known, each convex program has a dual program concerning 
the maximization of a concave function G*. Then the theory of such pro­
grams gives the duality inequality 

(3) G(xl9 x2, xs)^M^ G*(yl9 y2). 

Here M is the minimum of the primal program and also the maximum of 
the dual program. The dual variable yA is interpolated as the chemical 
potential of atomic hydrogen, i.e. y1=dGjde1. Likewise y2 is the chemical 
potential of atomic oxygen. 

The same mathematical theory often applies to entirely different physi­
cal situations. Nevertheless it was somewhat surprising when Avriel, 
Passy, and Wilde pointed out that the above described duality theory of 
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chemical equilibrium of perfect gases is essentially identical with the duality 
theory of geometric programming. Geometric programming concerns 
the economics of engineering design. The basic problem is to minimize 
the cost of construction and operation of a device or system. 

Of course the assumption that the various compounds in a chemical 
reaction obey perfect gas laws is at best an approximation. Zener and I 
wondered whether or not the duality inequality is just an approximation. 
By making some mild assumption of a physical nature, we were able to 
show the true Gibbs function is convex, and that there exists a concave 
function G* which satisfies the duality inequality (3). We termed G* the 
anti-Gibbs function. 

1. R. J. Duffin, E. L. Peterson and C. Zener, Geometric programming: Theory and 
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2. R. J. Duffin and C. Zener, Geometric programming, chemical equilibrium and the 
anti-entropy function, Proc. Nat. Acad. Sci. U.S.A. 63 (1969), 629-636. 

3. 1 Geometric programming and the Darwin-Fowler method in statistical 
mechanics, J. Chem. Phys. 74 (1970), 2419-2423. 

4. R. J. Duffin, Duality inequalities of mathematics and science, Nonlinear Pro­
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J. B. Rosen, O. L. Mangasarian and K. Ritter, Academic Press, New York, 1970, 
pp. 401-423. 

15. Associative network operations. Kirchhoff defined a network as 
an interconnection of resistors at nodal points. For the present purpose a 
network may be regarded as a black box. The nodes of the network on 
the surface of the box are called terminals and are ordered 1, 2, • • • , n. 
The network may or may not have other nodes inside the box. William 
Anderson, George Trapp and I have studied the problem of the inter­
connection of such network boxes to form larger networks. Thereby we 
have been led to some interesting algebraic questions. 

Consider two network boxes R and S, each having n terminals. How can 
R and S be conjoined to form a larger network X also having n terminals ? 
As a first approach to this question we defined a device termed a junctor. 
A junctor is a 3fl-terminal network box. The terminals are separated into 
three equal banks A, B, and J. A and B are termed input banks, and / is 
termed the output bank. Inside the junctor box the terminals are inter­
connected by wires of zero resistance. Such connections are subject to 
certain mild restrictions to ensure desirable physical properties. Thus 
unconnected terminals or short circuits are not allowed. 

The two network boxes are R and S, and are "plugged" into the input 
banks A and B of the junctor. Then the output bank / forms the terminals 
of a new «-terminal network X. Thus interconnections can be symbolized 
as 

X = J(R, S). 



1070 R. J. DUFFIN 

A junctor can be diagrammed as a triangular box. Thus Figure 15 shows a 
junctor for interconnecting 4 terminal networks termed the hybrid 
junctor. 

1 2 3 4 

FIGURE 15. The hybrid junctor 

The dotted lines denote the internal connections. 
Let T be another «-terminal network box and suppose that there are 

two identical junctors J. Then a new «-terminal box 7 can be constructed as 

Y = J(X,T) = J(J(R9S)9T). 

This raises the question of the associativity of the junctor operations. 
Thus, is 

(*) J(J(R,S\T) = J(R,J(S,T))1 

The equality here is interpreted to mean that the interconnection between 
R, S, T on the left and right are electrically equivalent. It is not difficult 
to show graphically that the hybrid junctor has the associativity property. 

To study the general associativity problem we introduced 3n by 3n 
adjacency matrices for a junctor. The matrix elements are 0 or 1. Thus 1 
means an internal connection and 0 means no connection. Our study led 
to simple necessary and sufficient conditions to insure the associativity 
condition. 
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