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Introduction. The linear parabolic differential equation 

,_ du(t, x) ^ , N d2u(t, x) , Np T / v du(t9 x) 
ot y dXidxj T fat 

and its connection with Markov processes with continuous paths, called 
diffusion processes, has been studied extensively, for example in the 
books of Doob [3], Itô and McKean [8], Dynkin [2], Mandl [12], Gihman 
and Skorohod [5], and in the papers of Stroock and Varadhan [15]. 
The equation (1), called the diffusion equation, is associated with a family 
P(t, x) of probability measures on the space C([0, oo), Rm) of continuous 
Rm-valued functions on [0, oo). Each of these measures defines a Markov 
process x(s, w) with continuous trajectories starting at the point x at 
time t, and the solution u(t9 x) of (1) may be represented on an interval 
[0, T] in terms of its initial value w(0, x) by the formula 

(2) u(t, x) = fw(0, x(T9 w))P(T - t, x) (dw). u(t9 x) = w(0, 

Note that the process x(s> w) is scaled in reverse, i.e. s=T—t for t^T. 
A common example of a diffusion equation is the Fokker-Planck 

equation of statistical mechanics for which the solution u(t, x) represents 
the density in phase space at time t for a fluid particle. This equation is 
usually derived as a nonlinear equation with coefficients au and Ẑ  depend­
ent in some way upon the solution u (see [16] for several such derivations). 
In textbooks, the dependence upon u is neglected to simplify the theory. 
One approach to the study of the nonlinear equation was introduced by 
McKean [13], [14] based upon a derivation of Kac [9] which gives coef­
ficients as a function of the value of w. Under certain smoothness conditions 
for the coefficients, McKean showed the existence and uniqueness of a 
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Markov process x(t9 w) which solved an associated stochastic differential 
equation. The trajectories represented paths of a particle in a "bath" of 
like particles. 

In the present paper we consider a more general nonlinear diffusion 
equation of the form 

(3) du(t9 x)jdt = Au(t9 x) 

where 

A ^ / du\ d2u , xr i / du\du 
Au = JiaJx,u,-\-— + 2 bix'u>Tx}te • 

For a given initial density «(0, x)9 approximations un(t, x) are formulated 
in terms of probability measures associated with the derivative of the oper­
ator A in the Banach space C0(R

m). The result is that with mild conditions 
upon the coefficients, the approximations converge to a solution u(t9 x) 
to (3) which has representations in terms of probability measures. This 
method of proving existence and uniqueness of solutions of the parabolic 
equation (3) is quite different from the standard methods such as the 
Galerkin method given in [11] and the method of Sobolevski given in 
[4], A new condition for global existence appears naturally in this new 
approach. The connection with probability theory obtained here shows 
that most of the linear theory may be applied to the study of nonlinear 
diffusion equations. 

The proofs of the theorems will appear in [6] and [7]. The main exis­
tence theorem is a consequence of a general theorem given in [7], whose 
proof depends upon the concept of "accretive" operator in the sense of 
Kato [10] and Crandall and Liggett [1]. (For references see these papers.) 

Statement of the results. Let C0(R
m) denote the Banach space of con­

tinuous real valued functions on Rm which vanish at infinity, and let D 
denote the dense linear subspace consisting of functions whose second 
derivatives are uniformly Holder continuous. We seek a solution u(t9 x) 
to the equation (3) when the initial condition w0=w(0, •) is given. The 
following assumptions are made : 

1. The functions u0 and Au0 are in D. 
2. The operator A is uniformly elliptic, i.e., there are constants À and 

JU such that for each x9y9 and p in Rm and u in R9 

*> \y\2 ^ 2 a"(x> u> p)y*y* = ^ M 2 -
3. The coefficients aH(x9 u9p) and b^x, u9p) and their derivatives with 

respect to u and p are uniformly bounded and uniformly Holder continu­
ous in all the variables. 
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We now define some linear diffusion operators for each u and w in D. 

/ji\ r / \ v / 9w\ 92w , ^ i / du\dw 

(4) K„)W = 2 ««I*. «. â; jâTâT.+ 2 M*M ' â;)âT. ' 
(5) Lidi)^ = I(iO(w) + 2 '*Ö0 1 ^ , 

where 

,r\ / x ^ 3fl<i 32w , ^ dbi du 
(6) cfc(ti, x) = 2 r H - T — r - + 2 r - V " ' 

^ 9jpfc dXi dxj *-* dpk dxj 

and finally 

(7) dA(u)w = Lx(u)w + d(w) • w 

where 

(8) d(u, x) = y —- + y — - — . 
^ du dx,t dXj ^ du dx4-

The operator dA(u) is the derivative of A at u. If v maps [0, T] into D, 
let P(u, /, x) and g(t>> *, x) be the probability measures associated with the 
linear operators L(v(s)) and L^vÇs)), respectively. Finally, let 

ÇT 
R(v, t, x)(dw) = Q(v, t, x)(dw)exp d(v(s), x(s, w)) ds. 

For a given positive number Tand a positive integer n, we subdivide the 
interval [0, T] into subintervals of length r = Tj2n. The approximations 
un(t, x) are defined as follows 

u*(t, x) = M(0, X) + t f K(t<(0, •), *, x)(dw)i4ii(0, x(T, w)) 

for O ^ r ^ r and 
tt£(f, x) = w*(r, x) for ^ r; 

w*(t, x) = i4~l(f, x) for t <; fer; 

w*(fcr + f, x) = w^fcr , x) + t [R^1, fer + t, x)(dw)Au(0, x(T, w)) 

for O ^ ^ r a n d 

w (̂fer + 0 = wn(^ r + r) f° r * = r-

Define un(t, x) = ul(t, x) where p=2n, so that w w ( f ,x)=w^,x) for 
each k when f^fer. 

The first existence theorem is as follows : 

THEOREM 1. If the assumptions 1, 2, 3 hold, then there is an interval 
[0, T] and a unique mapping u of [0, T] into D such that the functions 
Uni** *) converge in C0(R

m) to u(t), uniformly in t and du(t)ldt=Au(t). 
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An additional hypothesis gives a global existence theorem: 

THEOREM 2. If the assumptions 1, 2, 3 hold and if the functions ck(v9 x) 
and d(v, x) have a bound independent of v, then for each interval [0, T], 
there is a unique mapping u of [0, T] into D such that the functions un(t, •) 
converge in C0(R

m) to u(t) uniformly in t and du(t)ldt=Au(t). 

Next we see how the solutions u(t) are represented and approximated 
by probability measures : 

THEOREM 3. If the hypotheses of Theorem 1 or Theorem 2 are satisfied 
so that the approximations un(t, -)=un(t) converge to a solution u(t, -)= 
u(t) of (3), then there is a subsequence (un ) such that Q(unk, t, x) converges 
to Q(u, t, x) and P(unjc, t, x) converges to P(u, t, x) uniformly on compact 
subsets of [0, T] x Rm. Also 

(9) u(t, x) = u0(f)(x) + \ ds \R(u, T - s,x) (dw)Au0(x(T, w)) 

and 

(10) u(t, x) = f P(u, T — t9x) (dw)u0(x(T, w)). 

Thus the solution u(t9 x) to the nonlinear equation (3) has a representa­
tion (10) which looks like the representation (2) for the solution to the 
linear equation, and the integrals 

(11) [P(un> T - t, x) (dw)u0(x(T, w)) (p(un9 T - t , 

are approximations to the solution u(t, x) of (3). A corollary to the proof 
of Theorem 3 is that J R(unjc, T—t, x) (dw)Au0(x(T, x)) converges to 

Au(t, x) = f R(u, T — t9x) (dw)Au0(x(T, w)). 

This implies that 

— Au(t, x) = dAu(t)Au(t9 x). 
dt 

A case of some interest is the one where the coefficients of A are depend­
ent upon dujdx but not upon the value of u itself, for example when the 
diffusion and drift coefficients are dependent on the gradient of the density. 
In this case, dAu(t) is itself a diffusion operator and R(u91, x)=P(u, t, x) 
is a probability measure. The conditions of Theorem 2 for global existence 
is also simplified since d(u)=0. Finally we note that once the solution 
u(t, x) is known, the coefficients of A are determined along with the 
measure P(u, t, x), hence all the results of linear diffusion theory can be 
applied by considering the linear operator L(u(t)). 
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