BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 80, Number 5, September 1974

P_n-SPACES AND n-FOLD LOOP SPACES

BY PETER V. Z. COBB

Communicated by S. Eilenberg, March 5, 1974

The purpose of this paper is to present a characterization of *n*-fold loop spaces for $1 \le n < \infty$. The approach is in the same spirit as G. Segal's investigation of infinite loop spaces via "special Γ -spaces" [4]. Category theoretic terminology not explained here may be found in [1].

I. The *P*-construction on small pointed categories. Let P_1 be the category with objects the finite ordered sets, $n = \{0, \dots, n\}$, and with morphism sets $P_1(n, m) = \{f: n \rightarrow m | f(0) = 0; f(i) \leq f(j) \text{ if } i < j \text{ and } f(j) \neq 0\}$. Let $\#: P_1 \times P_1 \rightarrow P_1$ be the bifunctor such that $n \# m = \{0, \dots, n+m\}$ and such that if $f_i \in P_1(n_i, m_i)$ for i = 1, 2,

$$f_1 \# f_2(j) = f_1(j), \qquad 0 \le j \le n_1; \\ = f_2(j - n_1) + m_1, \quad n_1 < j \le n_1 + n_2 \text{ and } f_2(j - n_1) \ne 0; \\ = 0, \qquad n_1 < j \le n_1 + n_2 \text{ and } f_2(j - n_1) = 0.$$

Then # is strictly associative and 0 is a two-sided unit for # and a unique null-object for P_1 .

Let C be a small category with a unique null-object e. For each $a \in C$, we will denote by N_a and O_a the unique morphisms in C(a, e) and C(e, a)respectively. We now construct a strictly monoidal category P(C), which one might describe as a "wreath-product" of P_1 with C.

The objects of P(C) are the finite sequences, $\langle a_1, \dots, a_n \rangle$, of nonnull objects of C (including the empty sequence $\langle \rangle$). If $\alpha = \langle a_1, \dots, a_n \rangle$ and $\beta = \langle b_1, \dots, b_k \rangle$, we set

$$P(C)(\alpha, \beta) = \{ (f; h_1, \cdots, h_n) \mid f \in P_1(n, k), h_i \in C(a_i, b_{f(i)}) \}.$$

(By convention, $b_0 = e$.) Composition of morphisms is defined according to the rule:

$$(f'; h'_1, \cdots, h'_k)(f; h_1, \cdots, h_n) = (f'f; h'_{f(1)}h_1, \cdots, h'_{f(n)}h_n).$$

AMS (MOS) subject classifications (1970). Primary 18D10, 55D35; Secondary 55J10.

Copyright @ American Mathematical Society 1974

We define a bifunctor $\#: P(C) \times P(C) \rightarrow P(C)$ by:

$$\langle a_1, \cdots, a_n \rangle \# \langle b_1, \cdots, b_k \rangle = \langle a_1, \cdots, a_n, b_1, \cdots, b_k \rangle,$$

and

$$(f; h_1, \cdots, h_n) \# (f'; h'_1, \cdots, h'_k) = (f \# f'; h_1, \cdots, h_n, h'_1, \cdots, h'_k).$$

is strictly associative and $\langle \rangle$ is a two-sided unit for # and a unique null-object. There is a natural embedding of C as a full subcategory of P(C) via the functor $e \mapsto \langle \rangle$; $a \mapsto \langle a \rangle$, if $a \in C$, $a \neq e$; $h \mapsto (I_1; h)$ if h is a morphism in C.

If we let P_0 denote the full subcategory of P_1 containing just 0 and 1, it is easy to check that $P_1 \cong P(P_0)$.

II. Homotopy-monoidal functors. Let τ denote the category of pointed, compactly generated topological spaces of the homotopy type of a CW-complex and all continuous basepoint-preserving maps. Let $\prod : \tau \times \tau \to \tau$ denote the direct product bifunctor. If F is any functor from P(C) to τ , there is a natural transformation

$$L^{F}: F \cdot \# \xrightarrow{\cdot} \prod \cdot (F \times F): P(C) \times P(C) \to \tau$$

where, for $\alpha, \beta \in P(C)$, $L^{F}_{(\alpha,\beta)}: F(\alpha \# \beta) \rightarrow F(\alpha) \times F(\beta)$ is the unique map whose projections onto $F(\alpha)$ and $F(\beta)$ are $F(I_{\alpha} \# N_{\beta})$ and $F(N_{\alpha} \# I_{\beta})$ respectively. Notice that for $\alpha, \beta, \gamma \in P(C)$,

$$(L^{F}_{(\alpha,\beta)} \times I_{F(\gamma)}) \cdot L^{F}_{(\alpha\#\beta,\gamma)} = (I_{F(\alpha)} \times L^{F}_{(\beta,\gamma)}) \cdot L^{F}_{(\alpha,\beta\#\gamma)}$$

and that therefore, L^F extends naturally to products of more than two elements. In particular, if a_1, \dots, a_n are in C and $\alpha = \langle a_1, \dots, a_n \rangle$, we have a map: $L^F_{\alpha}: F(\alpha) \to \prod_{i=1}^n F(a_i)$.

The functor F is said to be homotopy-monoidal if L^F is a natural homotopy equivalence; or equivalently, if L^F_{α} is a homotopy-equivalence for all α in P(C). The category of all such homotopy-monoidal functors from P(C) to τ will be denoted by $(P(C), \tau)_h$.

Let R^+ denote the topological monoid of nonnegative integers under addition. We let \mathscr{M}_{R^+} denote the category of topological monoids over R^+ . To be precise, an object of \mathscr{M}_{R^+} is a pair (M, q_M) , where M is a monoid in τ , and q_M is a continuous homomorphism of monoids from Mto R^+ . A morphism from (M, q_M) to $(M', q_{M'})$ is a continuous homomorphism $g: M \to M'$ such that $q_{M'}g = q_M$. The direct product in \mathscr{M}_{R^+} is the pull-back over R^+ , and we will denote it by the symbol \square . If (C, e) is as above, we will let $(C, \mathscr{M}_{R^+})_0$ denote the category of functors from C to \mathscr{M}_{R^+} such that $F(e) = (R^+, I_{R^+})$ and $F(N_a) = q_{F(a)}$ for all $a \in C$. THEOREM 1. There is a functor, $F \mapsto \hat{F}: (C, \mathcal{M}_{R^+})_0 \to (P(C), \tau)_h$ such that $\hat{F}|_C = |F|$, where $| : \mathcal{M}_{R^+} \to \tau$ is the forgetful functor.

PROOF. Let $F \in (C, \mathcal{M}_{R^+})_0$. For $\alpha = \langle a_1, \dots, a_n \rangle$ in P(C) we set $\hat{F}(\alpha) = \prod_{i=1}^n F(a_i)$. For $(f; h_1, \dots, h_n) \in P(C)(\alpha, \beta)$, define $\hat{F}((\tau; h_1, \dots, h_n))$ to be the composition:

$$\prod_{i=1}^{n} F(a_i) \xrightarrow{\mathrm{H}^{(Fh_i)}} \prod_{i=1}^{n} F(b_{f(i)}) \cong \prod_{j=1}^{k} \left(\prod_{f(j)=j} F(b_{f(i)}) \right) \xrightarrow{\mathrm{H}^{\mu_j}} \prod_{j=1}^{k} F(b_j),$$

where $\mu_j = F(O_{b_j})$ if $f^{-1}(j) = \emptyset$; $=I_{F(b_j)}$ if $f^{-1}(j)$ is singleton; and is the multiplication in $F(b_j)$ otherwise. That \hat{F} is a functor is a straightforward but tedious exercise which we omit. \hat{f} is defined on natural transformations in the obvious way and again we omit the details. It remains to verify that \hat{F} is homotopy-monoidal.

If $\alpha = \langle a_1, \cdots, a_n \rangle \in P(C)$, then $L_{\alpha}^F: F(\alpha) \to \prod_{i=1}^n \hat{F}(a_i)$ is in fact the canonical inclusion $\prod_{i=1}^n F(a_i) \subseteq \prod_{i=1}^n F(a_i)$. Define a homotopy-inverse to L_{α}^F as follows: Let μ_i denote the multiplication in $F(a_i)$, and if $x = (x_1, \cdots, x_n) \in \prod_{i=1}^n F(a_i)$, let $m_x = \max\{q_{F(a_i)}(x_i) | 1 \leq i \leq n\}$. Define $G(x) = (y_1, \cdots, y_n)$, where

$$y_i = \mu_i(F(O_{a_i})(m_x - q_{F(a_i)}(x_i)), x_i).$$

Since $q_{F(a_i)}(y_i) = m_x$ for all $i, (y_1, \dots, y_n) \in \prod_{i=1}^n F(a_i)$. G is clearly a left inverse for L_{α}^F and a right homotopy-inverse for L_{α}^F . Hence F is homotopy-monoidal, and the theorem is proved.

III. Special P_n -spaces and iterated loop spaces. Following the pattern for P_0 and P_1 above, we define $P_n = P(P_{n-1})$ for $n \ge 2$, and if m < n, we identify P_m with its image in P_n . Notice that if m < n, P_m is a full subcategory of P_n , but the monoid structure of P_m is not related to the monoid structure of P_n , and hence, if $F \in (P_n, \tau)_h$, $F|_{P_m}$ is not necessarily in $(P_m, \tau)_h$. If F is a functor from P_n to τ , we say that F is a special P_n -space if $F|_{P_m}$ is in $(P_m, \tau)_h$ for all $m, 1 \le m \le n$, and if F(0) is a point. We denote the category of special P_n -spaces by $(P_n, \tau)_s$. If $X \in \tau$, we say that X admits a special P_n -structure if there is an F in $(P_n, \tau)_s$ such that $F(1) \simeq X$.

If $F \in (P_n, \tau)_s$, we say that F is *well-pointed*, if for every $\alpha \in P_n$, $F(O_\alpha)$: $F(\mathbf{0}) \rightarrow F(\alpha)$ is a cofibration. $(P_n, \tau)_{sw}$ will denote the category of wellpointed, special P_n -spaces.

THEOREM 2. For every $n \ge 0$, there is a functor $W: (P_n, \tau)_{sw} \rightarrow (P_{n+1}, \tau)_{sw}$ such that for every $F \in (P_n, \tau)_{sw}$, $WF(\mathbf{1}) \simeq |\Omega F(\mathbf{1})|$, where Ω is the Moore loop space functor: $\tau \rightarrow \mathcal{M}_{R^+}$.

PROOF. Let $F \in (P_n, \tau)_{sw}$. Then $\Omega F \in (P_n, \mathcal{M}_{R^+})_0$ and, by Theorem 1, we have $(\Omega F)^* \in (P_{n+1}, \tau)_h$. If $a \in P_n$, then $F(O_a):F(\mathbf{0}) \rightarrow F(a)$ is a co-fibration, hence $\Omega F(O_a): \Omega F(\mathbf{0}) = R^+ \rightarrow \Omega F(a)$ is a cofibration, and it

912

follows easily that $F(O_{\alpha}): R^+ \rightarrow (\Omega F)^{\wedge}(\alpha)$ is a cofibration for all $\alpha \in P_{n+1}$. We now define $WF(\alpha) = (\Omega F)^{\wedge}(\alpha)/R^+$, where the quotient is as spaces not as monoids. If $h \in P_{n+1}(\alpha, \beta)$, then $O_{\beta}h = O_{\alpha}$, hence WF extends naturally to morphisms. The quotient natural transformation from $(\Omega F)^{\wedge}$ to WF is a natural homotopy equivalence since R^+ is a cofibered contractible subset of $F(\alpha)$ for all $\alpha \in P_{n+1}$. Therefore $WF|_{P_m} \in (P_m, \tau)_h$ if $(\Omega F)^{\wedge}|_{P_m}$ is. By Theorem 1, $(\Omega F)^{\wedge} \in (P_{n+1}, \tau)_h$ and $(\Omega F)^{\wedge}|_{P_m} = |\Omega F||_{P_m}$ if $m \leq n$. But $|\Omega|$ preserves homotopy equivalences and products up to homotopy equivalence, and it follows easily that $|\Omega F||_{P_m} \in (P_m, \tau)_h$, for $1 \leq m \leq n$. The theorem now follows immediately.

COROLLARY 2.1. If $X \in \tau$ and X has a cofibered basepoint, then $\Omega^n(X)$ admits a P_n -structure.

The proof is an easy induction using Theorem 2.

IV. **Delooping.** We utilize the delooping technique of Segal [4] to prove that every connected space which admits a special P_n -structure is of the homotopy type of an *n*-fold loop space.

Recall that a semisimplicial object in τ is a functor $A:\Delta^{op} \to \tau$, where Δ is the category whose objects are the finite ordered sets, $[n] = \{0, \dots, n\}$ for $n \ge 0$, and whose morphisms are all weakly increasing set functions. For $1 \le i \le n$, let $\lambda_i^n: [1] \to [n]$ be the map which sends 0 and 1 to i-1and *i* respectively. If A is a semisimplicial object in τ , we say that A is a special Δ -space if A([0]) is a point and the map $A([n]) \to (A([1]))^n$ induced by the maps $A(\lambda_i^n)$, for $1 \le i \le n$, is a homotopy equivalence for all $n \ge 1$. If A is a special Δ -space, we let BA denote the Milnor realization of A as a semisimplicial space [2], [3], [4]. If $A([1]) \simeq \Omega BA$.

THEOREM 3. There is a functor $\vec{B}: (P_n, \tau)_s \rightarrow (P_{n-1}, \tau)_s$, for each $n \ge 1$, such that if $F \in (P_n, \tau)_s$ and F(1) is connected, then $\vec{B}F(1)$ is connected and $F(1) \simeq \Omega \vec{B}F(1)$.

PROOF. Define a functor $E:\Delta^{\text{op}} \to P_1$ as follows: E([n]) = n, and if $f \in \Delta([n], [m])$, then $Ef \in P_1(m, n)$ is defined by:

$$Ef(i) = 0, \quad i > f(n) \text{ or } i \le f(0),$$

= $j, \quad f(j-1) < i \le f(j).$

If $\lambda_i^n \in \Delta([1], [n])$ is as above, $1 \leq i \leq n$, then $E\lambda_i^n(j) = \delta_{ij}, j \in n$. It follows that if F is a special P_1 -space, then FE is a special Δ -space.

Now, let $F \in (P_n, \tau)_s$. We have a functor, $\tilde{F}: P_{n-1} \to (P_1, \tau)_s$, given by: $\tilde{F}(a)(m) = F(\langle a, \dots, a \rangle)$ (*m* terms), $\tilde{F}(a)(f) = F((f; I_a, \dots, I_a))$, and $\tilde{F}(h)(m) = F((I_m; h, \dots, h))$, where *a* is an object in P_{n-1} , *m* is an object

1974]

in P_1 , f is a morphism in P_1 and h a morphism in P_{n-1} . Using the functoriality of the realization functor B, we can define a functor $\bar{B}F:P_{n-1}\rightarrow \tau$ by $\bar{B}F(a)=B(\tilde{F}(a)E)$. A tedious but straightforward argument, using the fact that B preserves products (of semisimplicial spaces) and homotopy equivalences, tells us that $\bar{B}F$ is a special P_{n-1} -space. We omit the details of this and of the equally straightforward account of the functoriality of \bar{B} .

Since $F(1) = \tilde{F}(1)(1)$, it follows from the remarks just preceding the statement of this theorem that $\tilde{B}F(1)$ is connected and $F(1) \cong \Omega BF(1)$, if F(1) is connected.

COROLLARY 3.1. Suppose X is in τ , is connected, and admits a special P_n -structure. Then there exists a Y in τ such that $X \simeq \Omega^n(Y)$.

The proof is an easy induction using Theorem 3.

BIBLIOGRAPHY

1. S. Mac Lane, *Categories for the working mathematician*, Springer-Verlag, New York, 1971.

2. J. Milnor, The geometric realization of a semi-simplicial complex, Ann. of Math. (2) 65 (1957), 357–362. MR 18, 815.

3. G. Segal, *Classifying spaces and spectral sequences*, Inst. Hautes Études Sci. Publ. Math. No. 34 (1968), 105-112. MR 38 #718.

4. ——, Homotopy-everything H-spaces (preprint).

DEPARTMENT OF MATHEMATICS, FORDHAM UNIVERSITY, NEW YORK, NEW YORK 10458