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The purpose of this paper is to present a characterization of «-fold 
loop spaces for 1 ^ « < oo. The approach is in the same spirit as G. Segal's 
investigation of infinite loop spaces via "special T-spaces" [4]. Category 
theoretic terminology not explained here may be found in [1]. 

I. The P-construction on small pointed categories. Let Px be the 
category with objects the finite ordered sets, JI={0, • • - , « } , and with 
morphism sets pjjt, m)={f:n-+m\f(0)=0;f(i)<:f(j) if /<;and f(j)^0}. 
Let #:P1xP1->P1 be the bifunctor such that /f#m={0, • • •, n+m} and 
such that ifft ePx(ni9 m^ for i = l , 2, 

= Mj ~ ni) + mi> n1<j^n1 + n2 and f2(J - nx) ^ 0; 
= 0, nx <j ^ nx + n2 and f2(J — nx) = 0. 

Then # is strictly associative and 0 is a two-sided unit for # and a unique 
null-object for Px. 

Let C be a small category with a unique null-object e. For each aeC, 
we will denote by Na and Oa the unique morphisms in C(a9 e) and C(e9 a) 
respectively. We now construct a strictly monoidal category P(C)9 which 
one might describe as a "wreath-product" of Px with C. 

The objects of P(C) are the finite sequences, (al9 • • • , an), of nonnull 
objects of C (including the empty sequence ( )). If <x.= (al9 • • • , an) 
and /3=(bl9 • • • , bk)9 we set 

P(C)(a, P) = {(ƒ; hl9 • • •, K) | ƒ G Px(n9 k\ h< G C(ai9 &,<«>)}. 

(By convention, bQ=e.) Composition of morphisms is defined according 
to the rule : 

(ƒ'; * { , - • - , K)(f; hl9 • • •, K) = (ƒ'ƒ; /i;(1)ftl5 • • •, /i;(w)/zj. 

^M5 (MOS') .wityec/ classifications (1970). Primary 18D10, 55D35; Secondary 
55J10. 
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We define a bifunctor #:P(C)xP(C)-+P(C) by: 

<fli> ' * ' , an) # Q>19 • - • , bk) = (al9 • • • , an9 bl9 • • • , bk)9 

and 

(ƒ; K • • •, hn) #<J'\K,---, K) = (ƒ# / ' • • K • • • . K, * ! , • • • , K)-

# is strictly associative and { ) is a two-sided unit for # and a unique 
null-object. There is a natural embedding of C as a full subcategory of 
P(C) via the functor e\-*{ ); a\->(a)9 if ae C9 a^e; hh+(It; h) if A is a 
morphism in C. 

If we let P0 denote the full subcategory of Px containing just 0 and 1, 
it is easy to check that P1^P(P0). 

II. Homotopy-monoidal functors. Let r denote the category of pointed, 
compactly generated topological spaces of the homotopy type of a CW-
complex and all continuous basepoint-preserving maps. Let I"I :T XT->T 
denote the direct product bifunctor. If F is any functor from P(C) to r, 
there is a natural transformation 

LF:F • # ^ > n • (F X F):P(C) X P(C)-+T 

where, for a, peP{C)9 L(a,fi):F(oL#py+F(<x)xF(P) is the unique map 
whose projections onto F(OL) and F(/?) are F(Ia#N^) and F{Na#Ip) respec
tively. Notice that for a, j8, y e P(C), 

and that therefore, LF extends naturally to products of more than two 
elements. In particular, if al9 • • ' , an are in C and 0L=(al9 • • • , #w), we 
have a map: Lf :F(a)->-n?-i ^ (^ ) -

The functor F is said to be homotopy-monoidal if / ƒ is a natural homo
topy equivalence; or equivalently, if LF is a homotopy-equivalence for 
all <x in P(C). The category of all such homotopy-monoidal functors from 
P(C) to T will be denoted by (P(C), r)^. 

Let i?+ denote the topological monoid of nonnegative integers under 
addition. We let Jt'R+ denote the category of topological monoids over 
R+. To be precise, an object of *JfR+ is a pair (M, qM)9 where M is a 
monoid in r, and qM is a continuous homomorphism of monoids from M 
to i?+. A morphism from (M, ^M) to (M', y^,) is a continuous homomor
phism g\M->M' such that qM'S^^M- The direct product in J?R+ is the 
pull-back over R+

9 and we will denote it by the symbol -f̂ . If (C, e) is 
as above, we will let (C, ^R+)0 denote the category of functors from C to 
^R+ such that F(e)=(R+

9 IR+) and F(Na)=qF{a) for all c e C . 
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THEOREM 1. There is a functor, Fh+fi:(C9 *JfR+)Q-+(P(C)9 r)h such 
that Ê\C=\F\, where | | :*ÀfR+-*r is the forgetful functor. 

PROOF. Let Fe (C9^R+)0. For <x.=(al9 • • • , an) in F(C) we set 
^0*)=FEUF(a t). For (ƒ;*! ,••• , AJGP(C)(OC,/?) ,define/((r ;h l 9---9hn)) 
to be the composition: 

n ¥t^Fht) n k / \ ^ffri. k 

where ^ = P ( 0 & . ) i f / _ 1 ( j ) = 0 ; =IF(bj) i f / _ 1 ( ; ) is singleton; and is the 
multiplication in P(^) otherwise. That / is a functor is a straightforward 
but tedious exercise which we omit. A is defined on natural transformations 
in the obvious way and again we omit the details. It remains to verify that 
/ is homotopy-monoidal. 

If a = ( f l i , " ' , f l B > e P ( C ) , then L?:F((x)-^Uti^ù is in fact the 
canonical inclusion -f^JLi F(at)ç^YTi=i F{a^). Define a homotopy-inverse 
to Lf as follows: Let ^ denote the multiplication in F{a^9 and if x= 
(xl9 • • • , xn) G n ? - i F(at)9 let mx=msix{qF{at)(xi)\l^i^n}. Define G(x)= 
Oi , ' ' ' , J J , where 

yi = Vi(F(Oat)(mx - qmat)(xd), xt). 

Since ^ ( ^ O ^ ™ * for all i, ( j l 5 • • • j J e f f i i W . G is clearly a 
left inverse for P f and a right homotopy-inverse for Pf. Hence Pis homo
topy-monoidal, and the theorem is proved. 

III. Special Pw-spaces and iterated loop spaces. Following the pattern 
for P0 and Px above, we define Pn=P(Pn_1) for n7±29 and if m<n9 we iden
tify Pm with its image in Pn. Notice that if m<n, Pm is a full subcategory 
of Pw, but the monoid structure of Pm is not related to the monoid structure 
of Pn9 and hence, if F e (Pn9 r)h9 F\Pm is not necessarily in (Pm9 r)h. If 
P i s a functor from Pn to r , we say that Pis a specialPn-space if F\Pm is in 
(Pm9 r)h for all m, 1 ^m^n9 and if P(0) is a point. We denote the category 
of special Pw-spaces by (Pn, T)S. If X e r , we say that X admits a special 
Pn-structure if there is an P in (Pn, r) s such that P(l)c± X. 

If P G (Pn, r) s , we say that P is well-pointed, if for every a G Pw, P(Oa) : 
P(0)-KP(OC) is a cofibration. (Pw, r)sw; will denote the category of well-
pointed, special Pw-spaces. 

THEOREM 2. For every n^S)9 there is a functor W: (Pn9 r)sw->(Pn+l9 r)sw 

such that for every F e (Pn9 r)sw9 WF(l)c^\£lF(l)\9 where Q, is the Moore 
loop space functor: r-+*JfR+. 

PROOF. Let P G (Pn9 r)sw. Then (IF G (Pn9 ~£R+)0 and, by Theorem 1, 
we have (tiP)A G (Pn + 1 , r)h. It aePn9 then P(Oa):P(0)^P(a) is a co
fibration, hence fiP(Oa):tiP(0)=P+-^£iP(a) is a cofibration, and it 
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follows easily that F(Oa):P+->(OF)A(a) is a cofibration for all a e Pn+1. 
We now define ^F(a) = (£lF)A(a)/P+, where the quotient is as spaces 
not as monoids. If h eP n + 1 (a , /?), then Oph = Oa9 hence WF extends 
naturally to morphisms. The quotient natural transformation from (XXF)A 

to WF is a natural homotopy equivalence since R+ is a cofibered contrac
ture subset of F(oc) for all ocePn+1 . Therefore WF\P e(Pm9r)h if 
(QF)A |pw is. By Theorem 1, (OF)A e (Pn+l9 r\ and (QFy\Pm=\QF\\Pm 

if ra^«. But | 0 | preserves homotopy equivalences and products up to 
homotopy equivalence, and it follows easily that \QF\\PmE (Pm9 r)h9 

for l^rargfl. The theorem now follows immediately. 

COROLLARY 2.1. If Xe r and X has a cofibered basepoint, then Q,n(X) 
admits a P' „-structure. 

The proof is an easy induction using Theorem 2. 

IV. Delooping. We utilize the delooping technique of Segal [4] 
to prove that every connected space which admits a special Pw-structure is 
of the homotopy type of an «-fold loop space. 

Recall that a semisimplicial object in r is a functor A : Aop—*r, where A is 
the category whose objects are the finite ordered sets, [«] = {0, ••-,/*} 
for tt§:0, and whose morphisms are all weakly increasing set functions. 
For l<i^n9 let X%\ [1 ]->[n] be the map which sends 0 and 1 to /— 1 
and i respectively. If A is a semisimplicial object in r, we say that A is a 
special A-space if A([0]) is a point and the map A([n])-+(A([l]))n induced 
by the maps A(A")9 for l^i^n, is a homotopy equivalence for all n^.1. 
If A is a special A-space, we let BA denote the Milnor realization of A as a 
semisimplicial space [2], [3], [4]. If ^4([1]) is connected, then BA is also 
connected, and Segal has proved [4] that A([\])~£IBA. 

THEOREM 3. There is a functor B:(Pn9 r)s->(Pn_l9 r)s, for each n^l, 
such that if F E (Pn9 r)s and F(l) is connected, then BF(\) is connected and 
F(1)~CIBF(1). 

PROOF. Define a functor £ :A o p -^P 1 as follows: E([n])=n9 and if 
ƒ G A([n]9 [m])9 then EfeP^m, n) is defined by: 

£ƒ(/) = 0, i >f(n) or i^f(0), 

= h f(j-l)<i^f(j)-

If XI e A([l], [/!]) is as above, 1 <j/^/i, then EXÎ(j)=dii9j e n. It follows 
that if F is a special Pi-space, then F E is a special A-space. 

Now, let F G (Pn9 T)S. We have a functor, F:Pn_1-+(Pl9 r)s , given by: 
F(a)(m)=F((a9--,a)) (m terms), F(a)(f)=F((f9 Ia9 • •• , Q), and 
F(h)(m)=F((Im; h9- • • , h))9 where a is an object in Pn_l9 m is an object 
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in Pl9 f is a morphism in Px and h a morphism in Pn_i. Using the functori-
ality of the realization functor B, we can define a functor BF'.Pn_x->T 
by BF(à)=B(F(a)E). A tedious but straightforward argument, using the 
fact that B preserves products (of semisimphcial spaces) and homotopy 
equivalences, tells us that BF is a special Pn_rspacç. We omit the details 
of this and of the equally straightforward account of the functoriality 
of B. 

Since F(1)=F(1)(1), it follows from the remarks just preceding the 
statement of this theorem that BF(1) is connected and F(1)^ÇIBF(Ï), 
if F(l) is connected. 

COROLLARY 3.1. Suppose X is in T, is connected, and admits a special 
Pn-structure. Then there exists a Y in r such that Xc=iQn(Y). 

The proof is an easy induction using Theorem 3. 
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