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The following theorem holds:

THEOREM 1. Let A, B be two integral 2 X2 matrices. Let the charac-
teristic roots of A be «, o’ and let the characteristic roots of B be 3, f', all
assumed irrational. Then the determinant of

() L= AB — BA
is a negative norm in both Q(«), Q(f).

REMARK. The proof of this theorem gives an algorithmic procedure
for expressing an integer as a norm in a quadratic field.
ProoF. There exists? an integral matrix S with the property that S—14S

is the Companion matrix
( )
—detA trA

of A. Since the companion matrix has the characteristic vectors (1, o),
(1, «’)’ the matrix T=(} ) has the property that T-1S71AST=(*,).
Apply then the same similarity also to B and to L, i.e. to (x). Let the out-
come of this be denoted by

(+%) (“ )B(a) _ B(a)(“ ) — @ — (0 lz);
o o I; 0

then /,, /5 are elements in Q (o).

Apply the similarity defined by 7 to L'”. The result must be rational.
A straightforward computation using the fact that o, o' =—3}(tr 4A+./m),
with m=(tr A2—4 det A), shows that

(1 1)(0 12)(oc' —1) 1 __L(oc’la—oclz I — Iy )
a &' /\ly 0/\=a 1 /Ja'—«a Jm\o®ly — o¥ly, —a'ly + o/
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This implies
1) Iy — Iy = ri\/m, with ry rational,
—m 1 2[(tr A — [m)ly — §(tr A + /m)l]
@ = —m 2} tr AUy — ) — 3/ms + 1)]
= rational.
In virtue of (1) we obtain
3) Iy + I3 =r,, with r, rational.

From (1), (3) follows
12=%("2+"1\/m), ls=12‘("2_"1\/m)-

Hence /,, /3 are conjugate elements in Q(x). Since

0 L\ _ _
det(13 0) —_— —1213 - det L,
the theorem follows if it is further observed that AB—BA=—(BA—AB)
and that det(4B— BA)=det(BA— AB).

0

THEOREM 2. Let Z be a matrix of the form (3, 3) when m is an integer
not a square. If Z is expressed in the form XY—YX, where X, Y are
rational matrices,® then the characteristic roots of X lie in the field Q(\/M)
where M is the norm of an element in Q(\/m).

It can further be shown that M can be chosen as an arbitrary norm in
Q(y/m). Combining this fact with Theorem 1 leads to the following
result:

THEOREM 3.  Every negative norm in a quadratic field can be represented
as det(AB— BA).

EXAMPLES.
2. A=(% 1), B=G DG 06 D,
n—m+ mn —2n )

AB_BA:( 2mn —n+m—mn

det(AB — BA) = —[(n — m + mn)?* — 4mn?]
= —[(m — n + mn)® — 4m?>n].

3 This is always possible by a theorem of Shoda.
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3. A random choice.
1 2 1 3
A—(3 4), B—(l 5).

A has characteristic polynomial x2—5x—2 and roots in Q(\/(33)). B has
characteristic polynomial x2—6x+2 and roots in Q(/7). The commutator
AB— BA has determinant

—58 = —norm(31 + /(33))/4 = —norm(11 + 3,/7).

REMARK. Zassenhaus observed that for matrices 4 with 42=det 4 -1
the relation AL+ LA=0 holds. This can be generalized to the fact that the
operator defined via 4 on the space of 2 x 2 matrices has the characteristic
vector L with respect to the characteristic root trace 4.
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