A REPRESENTATION OF CLOSED, ORIENTABLE 3-MANIFOLDS AS 3-FOLD BRANCHED COVERINGS OF S³

BY JOSÉ M. MONTESINOS

Communicated by William Browder, April 5, 1974

A represented link is a link L in S^3 together with a representation ω of the link group $\pi(S^3-L)$ into the symmetric permutation group of d symbols \mathcal{S}_d . Let us call ω simple if it represents each meridian of L by an appropriate transposition. If (L, ω) is a represented link, there is a uniquely associated closed, orientable 3-manifold $M(L, \omega)$, namely the d-fold covering of S^3 branched over L, that is determined by the representation ω . It has been proved by J. W. Alexander [1] that every closed orientable 3-manifold is $M(L, \omega)$ for some link L and representation ω .

H. M. Hilden (personal communication to the author) has proved

THEOREM 1. Every closed, orientable 3-manifold is $M(K, \omega)$ for some knot K and simple representation ω of $\pi(S^3-K)$ onto \mathcal{S}_3 .

Theorem 1 states that every closed, orientable 3-manifold is a 3-fold irregular covering space of S^3 branched over a knot K in such a way that the inverse image of a point of K consists of a point of branch-index 2 and a point of branch-index 1.

We have obtained (independently) a different proof of Theorem 1 which will be sketched here. A detailed proof will appear elsewhere.

Let L be a link in S^3 composed of two unlinked trivial knots P and R, and let ω be a representation of $\pi(S^3-L)$ onto the group \mathcal{S}_3 of permutations of the symbols 0, 1, and 2, such that ω represents a meridian of P (resp. R) by the transposition (01) (resp. (02)). It is easy to see that $M(L,\omega)$ is S^3 . Let $p:M(L,\omega)\to S^3$ be the covering projection. Then $p^{-1}(P)$ (resp. $p^{-1}(R)$) is composed of a curve P_{01} (resp. R_{02}) of branchindex 2 and a curve P_2 (resp. R_1) of branchindex 1. These curves are unknotted and unlinked. Let R be a ball in R0 which cuts R1 in exactly two disjoint arcs in R2 and a solid torus R3 which cuts R4 is

AMS (MOS) subject classifications (1970). Primary 55A10, 57A10; Secondary 55A25. Key words and phrases. Branched covering space, surgery on link, three-manifold, knot, link.

the branched covering induced by the "symmetry with respect to axis P_{01} ". If we remove B from S^3 and resew them differently, in such a way that $\partial B \cap P$ keeps fixed as a set, the effect in the covering is to remove $p^{-1}(B)$ from S^3 and to resew it differently. This is the same as doing surgery on the solid torus B_{01} .

W. B. R. Lickorish has proved [2, p. 419] that every closed, orientable 3-manifold can be obtained by surgery on a member of a special family \mathcal{F} of links in S^3 . If N' is a link in \mathcal{F} , there is a link N, of the same isotopy type as N', such that each component of N cuts $P_{01}+R_{02}$ in exactly two points and is "symmetric" with respect to P_{01} or R_{02} . If N has n components, then there is a union of n disjoint solid balls B_1, \dots, B_n such that $p^{-1}(\bigcup_{i=1}^n B_i)$ is the disjoint union of a regular neighbourhood of N and n solid balls in $M(L, \omega)$. We can remove the balls B_1, \dots, B_n from S^3 and resew them differently in order to obtain a link with a simple representation onto \mathcal{S}_3 , (L', ω') , such that $M(L', \omega')$ is exhibited as a manifold obtained by doing a given surgery on the link N. This shows that each manifold obtained by surgery on a member of \mathcal{F} is $M(L', \omega')$ for some link L' and some simple representation ω' onto \mathscr{S}_3 . Now, we can apply the modifications defined in [3] to (L', ω') to obtain a knot with a simple representation onto \mathcal{S}_3 , (K, ω'') , such that $M(K, \omega'') = M(L', \omega')$. This proves Theorem 1.

Note that our proof is constructive in the following sense. If a manifold M is obtained by surgery on a member of \mathcal{F} , we can *exhibit* a simple represented knot (K, ω) such that $M(K, \omega) = M$.

REFERENCES

- 1. J. W. Alexander, *Note on Riemann spaces*, Bull. Amer. Math. Soc. 26 (1920), 370-372.
- 2. W. B. R. Lickorish, A foliation for 3-manifolds, Ann. of Math. (2) 82 (1965), 414-420. MR 32 #6488.
- 3. J. M. Montesinos Amilibia, Reduction of the Poincaré conjecture to other geometric conjectures, Rev. Mat. Hisp.-Amer. (4) 32 (1972), 33-51. (Spanish) MR 47 #2590.

FACULTAD DE CIENCIAS, SECCIÓN DE MATEMÁTICAS, UNIVERSIDAD COMPLUTENSE, MADRID, SPAIN