MANIFOLDS WITH THE FIXED POINT PROPERTY. I

BY S. Y. HUSSEINI¹

Communicated by Mary Ellen Rudin, November 6, 1973

1. Introduction. Suppose that $f: M \to M$ is a map of the simply connected closed (smooth or PL) manifold M which preserves a given geometric structure. We shall consider the question of when f has a fixed point. (The geometric structure is described by an element ξ in $K_R(M)$, the Grothendieck group of real vector bundles over M. If deg f=1, then for f to preserve ξ means just that $f^*\xi=\xi$, and the appropriate notion when deg $f \neq 1$ is given below in §2. Such maps are said to be (ξ, λ) -maps with λ an integer.) Since M is simply connected, one need only compute the Lefschetz number $\mathscr{L}(f)$ of f. Thus there are three natural stages to the solution: the determination of the induced homomorphism $f^*: H^*(M; \mathbb{Z}) \to H^*(M; \mathbb{Z})$ first below the middle dimension, then in the middle dimension (when dim M is even), and finally the determination of how the two are related to each other and how they determine the behaviour above the middle dimension.

As a first step in this direction, we consider here the case of (2m-1)connected M of dimension 4m whose intersection pairing is definite (said to be of class \mathscr{M}_{4m}). It is shown that if ξ is asymmetric enough in a suitable sense (described below in §2), then any (ξ, λ) -map $f: M \to M$ has a fixed point. In particular it follows that if the tangent bundle $\tau(M)$ of Mis asymmetric enough, then a $(\tau M, 1)$ -map $f: M \to M$ has a fixed point. Therefore every homeomorphism of such a manifold M has a fixed point. It is also shown that the product of (ξ, λ) -maps with ξ being asymmetric also has a fixed point.

[Note. At this point I would like to thank Ed Fadell for the suggestions and stimulation offered in many good conversations on this topic.]

2. Statement of results. Suppose that M is a smooth (or PL) simply connected closed manifold of dimension 4m. A map $f: M \to M$ is said to be a (ξ, λ) -map, where λ is an integer, if and only if $f^*\xi = \lambda \xi + p^*\eta$ where

Copyright @ American Mathematical Society 1974

AMS (MOS) subject classifications (1970). Primary 55C20, 57D99; Secondary 54H25, 15A63.

¹ While working on this paper the author has been partially supported by the National Science Foundation GP-29538-A4.

 $p: M \to S^{4m}$ is a map of degree 1 and $\eta \in K_{\mathbb{R}}(S^{4m})$. (Note that a diffeomorphism $f: M \to M$ is a $(\tau M, 1)$ -map, $\tau(M)$ being the tangent bundle of M.)

Assume now that M is (2m-1)-connected, and suppose that the intersection pairing

$$\varphi: H^{2m}(M; \mathbb{Z}) \times H^{2m}(H; \mathbb{Z}) \to \mathbb{Z}$$

is positive definite. The class of such manifolds will be denoted by \mathscr{M}_{4m} . (See [1] for their classification.) Let $c_m = c_m(\xi^c) \in H^{2m}(M; \mathbb{Z})$ be the Chern class of $\xi^c = \xi \otimes C$, the complexification of ξ , and assume that $c_m(\xi^c) \neq 0$. One can easily show that this implies that deg $f = \lambda^2$ and the Lefschetz number $\mathscr{L}(f)$ is given by $\mathscr{L}(f) = 1 + s\lambda + \lambda^2$, with s rational and $|s| \leq \sigma$, σ being the signature of φ . Hence $\mathscr{L}(f) \neq 0$ for $|\lambda| > \sigma$. On the other hand, the behaviour of $\mathscr{L}(f)$ for $|\lambda| \leq \sigma$ is quite different, and thus σ is, in a sense, a critical threshold.

To describe the case $|\lambda| \leq \sigma$, one shows first that there is a basis $\mathscr{S} = \{x_1, \dots, x_{\sigma}\}$ for $H_{2m}(M; \mathbb{Z})$ with the property that $\langle x_i, c_m \rangle = \beta^{s_i}$ where $\beta = \min\langle x, c_m \rangle$ and s_i are integers such that $s_1 = 1, s_j - s_i > 0$ for all j > i, and c_m the mth Chern class of ξ .

The basis $\mathscr{S} = \{x_1, \dots, x_{\sigma}\}$ defines a critical region for ξ . If $x, y \in H_{2m}(M; \mathbb{Z})$ and xy denotes their intersection number, then the critical region is the set

$$B_{\mathscr{S}} = \{ x \in H_{2m}(M; \mathbb{Z}) \mid x^2 \leq \sigma^2 \mu_{\mathscr{S}} \}$$

where $\mu_{\mathscr{G}} = \max_i x_i^2$. Now let $\beta_{\mathscr{G}}$ be the smallest integer such that $|a_i| < \beta_{\mathscr{G}} - \sigma$ for all *i*, where $\sum_i a_i x_i \in B_{\mathscr{G}}$. ξ will be said to be sufficiently asymmetric if, and only if, $\beta \geq \beta_{\mathscr{G}}$.

THEOREM 2.1. Suppose that ξ is sufficiently asymmetric. Then any (ξ, λ) -map $f: M \rightarrow M$ has a fixed point, where $M \in \mathcal{M}_{4m}$ and m > 4.

The following is an immediate consequence.

THEOREM 2.2. Suppose that $M \in \mathcal{M}_{4m}$ with m even and >4, and assume that $\tau(M)$, the tangent bundle of M, is sufficiently asymmetric. Then any $(\tau M, 1)$ -map $f: M \rightarrow M$ has a fixed point. In particular, any homeomorphism of M has a fixed point.

The next theorem describes the behaviour of the products of (ξ, λ) -maps.

THEOREM 2.3. Suppose that M' and M'' are two manifolds in $\mathcal{M}_{4m'}$ and $\mathcal{M}_{4m''}$ with m', m'' > 4. Let $\xi' \in K_{\mathbb{R}}(M')$ and $\xi'' \in K_{\mathbb{R}}(M'')$ be sufficiently asymmetric, and put $\xi = \xi' \boxtimes \xi''$ where \boxtimes is the tensor product. Then any (ξ, λ) -map $f: M' \times M'' \to M' \times M''$ has a fixed point.

3. Construction of (ξ, λ) -maps. In view of the preceding, it is important to know whether there is a (ξ, λ) -map $f: M \to M$. A map such as f has degree λ^2 , and therefore the question becomes whether there is a map $f: M \to M$ of a given degree and whether a map of a given degree preserves a given $\xi \in K_{\mathbb{R}}(M)$. Let therefore $\alpha: H_{2m}(M; \mathbb{Z}) \to \pi_{2m-1}SO$ be the map which associates to x the characteristic class of the induced bundle $g^*\tau(M)$, gbeing an imbedding $S^{2m} \to M$ realizing x.

THEOREM 3.1. Suppose that $\gamma: H^{2m}(M; \mathbb{Z}) \to H^{2m}(M; \mathbb{Z})$ is a monomorphism such that $\varphi(\gamma x, \gamma y) = \lambda^2 \varphi(x, y)$ for all $x, y \in H^{2m}(M; \mathbb{Z})$, where λ is a given integer and φ is the intersection pairing in M. Assume also that $\gamma(\alpha) = \lambda \alpha$. Then there is a map $f: M \to M$ such that γ is the induced homomorphism on cohomology, provided that $J(\lambda(\lambda-1)\alpha(x))=0$ for all $x \in$ $H_{2m}(M; \mathbb{Z})$, with J being the J-homomorphism (cf. [2, Lemma 10] and [1, Theorem 5]).

Whether or not a map $f: M \to M$ of a given degree preserves a given $\xi \in K_{\mathbb{R}}(M)$ is decided by considering the characteristic classes of ξ and $f^*\xi$.

Thus the question of finding a (ξ, λ) -map $f: M \to M$ amounts to finding a homomorphism $\gamma: H^{2m}(M; \mathbb{Z}) \to H^{2m}(M; \mathbb{Z})$ which preserves the intersection pairing φ , the stable tangential structure α , and the Chern class of ξ . If M is almost parallelizable, then α is trivial, $\tau(M)$ has a large measure of symmetry, and the existence of (ξ, λ) -maps depends only on ξ and how large the group of automorphisms of φ is. In particular, if $\lambda = 1$ and $\xi =$ $\tau(M)$, it follows that every quadratic automorphism $\gamma: H^{2m}(M; \mathbb{Z}) \to$ $H^{2m}(M; \mathbb{Z})$ is induced by a corresponding homeomorphism $f: M \to M$.

References

1. C. T. C. Wall, Classification of (n-1)-connected 2n-manifolds, Ann of Math. (2) **75** (1962), 163–189. MR **26** #3071.

2. ——, Classification problems in differential topology. II. Diffeomorphisms of handlebodies, Topology 2 (1963), 263–272. MR 27 #6278.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706

666