GENERALIZED SUPER-PARABOLIC FUNCTIONS

BY NEIL EKLUND

Communicated by Alberto Calderón, September 22, 1973

The purpose of this note is to announce results which generalize potential theory (superharmonic functions) to a broad class of parabolic operators. Many of the properties of superharmonic functions carry over to functions in this new class. Let $Q = \Omega \times (0, T)$ where $\Omega \subseteq E^n$ is a bounded domain and T > 0 is a scalar. All functions will be defined on \overline{Q} and will be written as functions of (x, t) with $x \in \overline{\Omega}$ and $t \in [0, T]$.

For $(x, t) \in \overline{Q}$ assume

- (a) $a_{ij}(x, t)$ is a bounded, measurable function for $i, j=1, 2, \dots, n$ and assume there is a constant $\lambda > 0$ such that $\sum a_{ij}(x, t)z_iz_j \ge \lambda |z|^2$ for all $z \in E^n$ and almost all $(x, t) \in Q$.
 - (b) $c(x, t) \in L^q[0, T; L^p(\Omega)]$ for $n/2p+1/q<1, 1< p, q \le \infty$.
- (c) $b_j(x, t), d_j(x, t) \in L^q[0, T; L^p(\Omega)]$ for $j=1, \dots, n$ and $n/2p+1/q < \frac{1}{2}, 2 < p, q \leq \infty$.

The parabolic operator under consideration is defined by

$$Lu = u_t - \{a_{ij}(x, t)u_{,i} + d_j(x, t)u\}_{,j} - b_j(x, t)u_{,j} - c(x, t)u$$

where $u_{,j} = \partial u/\partial x_j$ and an index i or j is summed over $1 \le i, j \le n$ whenever it is repeated in a product.

DEFINITION 1. u(x, t) is a weak solution of Lu=0 in Q if u is locally in $L^2[0, T; H^{1,2}(\Omega)]$ and $\iint_Q [a_{ij}u_{,j}\phi_{,j}+d_j\phi_{,j}u-b_ju_{,j}\phi-cu\phi-u\phi_t] dx dt = 0$ for all $\phi \in C_0^1(Q)$.

Let $\partial_{\nu}Q = \{\partial\Omega \times [0, T]\} \cup \{\Omega \times (0)\}$ denote the parabolic boundary of Q. Due to the number of definitions and results, they are stated below with no proofs.

THEOREM 1. Let $f \in C(\partial_p Q)$ and let u=u(x,t) be the weak solution of the boundary value problem

$$Lu = 0$$
 on Q . $u = f$ on $\partial_p Q$.

Then, to each $(x, t) \in Q$, there corresponds a nonnegative Borel measure

AMS (MOS) subject classifications (1970). Primary 35K20, 31C05; Secondary 35D05. Key words and phrases. Superharmonic functions, parabolic operators.

 $\mu_{(x,t)}$ on $\partial_{v}Q$ such that

$$u(x, t) = \int_{\partial_R Q} f \, d\mu_{(x, t)} \quad on \ Q.$$

In the future, write $L(f; (x, t), Q) = \int_{\partial_n Q} f d\mu_{(x,t)}$.

DEFINITION 2. $u \in S_Q$ if and only if $u \in L^2[0, T; H^{1.2}(\Omega)]$ and for all $\phi \in C_0^1(Q^i)$ with $\phi \geq 0$, $\iint_Q [a_{ij}u_{,j}\phi_{,j} + d_j\phi_{,j}u - b_ju_{,j}\phi - cu\phi - u\phi_t] \, dx \, dt \geq 0$. DEFINITION 3. $R_a(x_0, t_0) \equiv \{(x, t); |x_i - x_{0i}| < a, t_0 - a^2 < t \leq t_0\}$ is called a standard rectangle based at (x_0, t_0) .

DEFINITION 4. $u \in l(Q)$ if and only if

- (i) $u \not\equiv +\infty$ on Q,
- (ii) $u > -\infty$ on Q, and
- (iii) u is lower semicontinuous on Q.

DEFINITION 5. The extended real valued Borel measurable function u defined on an open set D is

- (a) super-mean-valued at $z \in D$ if $L(u; z, R_{\delta})$ is defined and $u(z) \ge L(u; z, R_{\delta})$ for almost all δ with $\overline{R}_{\delta} \subset D$;
 - (b) super-mean-valued on D if it is super-mean-valued at each $z \in D$;
- (c) locally super-mean-valued at $z \in D$ if there is a $\delta(z) > 0$ such that $\overline{R}_{\delta(z)} \subset D$ and $u(z) \ge L(u; z, R_{\delta})$ for all $\delta < \delta(z)$;
- (d) locally super-mean-valued on D if it is locally super-mean-valued at each $z \in D$.

DEFINITION 6. $S_Q' = \{u \in l(Q); u \text{ is super-mean-valued on } Q\}$. $S_Q'' = \{u \in l(Q); \text{ for any cylinder } W = C \times (a, b) \text{ with } \overline{W} \subseteq Q, \text{ and any } v \text{ with } v \in C(\overline{W}), Lv = 0 \text{ on } W, \text{ and } u \geq v \text{ on } \partial_p W, \text{ it follows that } u \geq v \text{ on } W\}$. $S''' = \{u \in l(Q); u \text{ is locally super-mean-valued on } D\}$.

Theorem 2. $u \in S_Q$ with $u \ge 0$ on $\partial_{\nu}Q$ implies $u \ge 0$ on Q.

COROLLARY. If $c+\{d_j\}_{,j} \leq 0$ weakly on Q, then the weak solution u of Lu=0 in Q, u=1 on $\partial_v Q$ satisfies $0 \leq u(x,t) \leq 1$ on Q.

From now on assume $c+\{d_j\}_{j}\leq 0$ weakly on Q.

Theorem 3. Let $u \in S_Q^{'''}$. If, for some $(x_0, t_0) \in Q$, $u(x_0, t_0) = \inf_Q u \leq 0$, then $u(x, t) \equiv u(x_0, t_0)$ on $\Omega \times (0, t_0)$.

Theorem 4. $S_Q \subseteq S_Q' = S_Q'' = S_Q'''$

THEOREM 5. Let F(x) be convex on E^n with $F(0) \leq 0$. If Lu = 0 on Q, then $-F(u) \in S'_Q$.

THEOREM 6. Let F(x) be nondecreasing and convex on E^n with $F(0) \leq 0$. If $-u \in S'_Q$, then $-F(u) \in S'_Q$.

THEOREM 7. If $u \in S'_Q$, and if $u(x, t) \ge 0$, then there exist t_0, t_1 with $0 \le t_0 \le t_1 \le T$ such that

$$u(x, t) \equiv 0$$
 on $\Omega \times (0, t_0)$,
 $0 < u(x, t) < +\infty$ on $\Omega \times (t_0, t_1)$,
 $u(x, t) \equiv +\infty$ on $\Omega \times (t_1, T)$.

Theorem 8. If $u, v \in S'_Q$ and c > 0, then (i) $cu \in S'_Q$, (ii) $u + v \in S'_Q$, (iii) $\inf(u, v) \in S'_Q$.

THEOREM 9. $u, -u \in S'_Q$ implies Lu=0 weakly on Q.

THEOREM 10. Let $u \in S'_Q$ and let R be a standard rectangle with $\overline{R} \subseteq Q$. Set

$$v(x, t) = L(u; (x, t), R)$$
 $(x, t) \in R,$
= $u(x, t)$ $(x, t) \in Q - R.$

Then $u \ge v$ on Q, Lv = 0 on R, and $v \in S'_Q$.

REFERENCES

- 1. D. G. Aronson, Non-negative solutions of linear parabolic equations, Scuola Norm. Sup. Pisa 22 (1968), No. 4, 607-694.
- 2. D. G. Aronson and James Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rational Mech. Anal. 25 (1967), 81-122. MR 39 #5952.
- 3. Neil Eklund, Boundary behavior of solutions of parabolic equations with discontinuous coefficients, Bull. Amer. Math. Soc. 77 (1971), 788-792. MR 45 #2311.
- 4. Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, N.J. 1964. MR 31 #6062.
- 5. O. A. Ladyženskaja and N. N. Ural'ceva, *Linear and quasilinear elliptic equations*, "Nauka", Moscow, 1964; English transl., Academic Press, New York, 1968. MR 35 #1955; 39 #5941.
- 6. W. Littman, G. Stampacchia and H. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa (3) 17 (1963), 43–77. MR 28 #4228.
- 7. Walter Rudin, Real and complex analysis, McGraw-Hill, New York, 1966. MR 35 #1420.
- 8. Neil Trudinger, Pointwise estimates and quasilinear parabolic equations, Comm. Pure Appl. Math. 21 (1968), 205-226. MR 37 #1758.

Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37235