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Let M be a complete, simply connected, 72-dimensional Riemannian 
manifold with sectional curvature K^O. Eberlein in [7] and [9] has 
given the cone topology and a nice compactification M==MuM(oo) of 
M. The boundary M(co) of M is the set of asymptotic classes of geodesies 
in M. M is homeomorphic to the closed unit ball in Rn and M(oo) is 
homeomorphic to S*-1. Each isometry <j> of M extends to a homeomor-
phism of M. Elements of the isometry group I(M) can be classified 
according to their fixed points in M. </> is called elliptic if <f> has a fixed 
point in M. <£ is called parabolic or axial if <f> has exactly one fixed point 
or two fixed points in M(oo) respectively. If any two distinct points in the 
boundary M(co) can be joined by a unique geodesic in M (Axioms I 
and II), then M is called a Lobatchewsky manifold for convenience. 
A complete, simply connected Riemannian manifold with sectional curva­
ture K^c<0 is a Lobatchewsky manifold. 

In the sequel, we shall consider only Lobatchewsky manifolds M and 
we shall assume that I{M) acts effectively on M. 

The main theorem is a description of complete homogeneous Rie­
mannian manifolds with sectional curvature K^c<0. 

THEOREM 1. Let M be a complete homogeneous Riemannian manifold 
with sectional curvature K^c<0. Either I(M) has a common fixed point 
in M(oo) or M is a noncompact symmetric space of rank one. 

The tool of this paper is the concept of the limit set of a subgroup G 
of /(M). The limit set L(G) is the intersection with Af(oo) of the closure 
of any orbit of G in M. The limit set is independent of the choice of the 
orbit. If A is a closed subset of M(co) which contains more than one point 
and A is invariant under a subgroup G of/(M), then A^>L(G). The totally 
geodesic hull (A) of a subset A in M(oo) is the intersection of all totally 
geodesic submanifolds in M whose boundaries contain A. 

Let G be a subgroup of J(M). One obtains classification of L(G) in 
the following manner: (1) L(G) is empty, (2) L{G) contains one point, 
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(3) L(G) contains two points, (4) L(G) is an infinite, perfect and nowhere 
dense subset of M(oo), (5) L(G)=M(oo). Consequently, one can obtain 
classification of subgroups of I(M) according to their limit sets. A con­
crete classification of connected Lie subgroups of simple Lie groups of 
rank one has been accomplished in [5] and [6]. 

Here we present a unified version of the result in [5], [6] independent of 
Cartan's classification. 

THEOREM 2. Let M be a noncompact symmetric space of rank one. 
Let G be a connected Lie subgroup of I0(M). Then one of the following 
holds: 

(1) G has a common fixed point in M; 
(2) G has a common fixed point in M(co); 
(3) G modulo a normal subgroup (isomorphic to a subgroup of 0(n—\)) 

is the l-parameter group of axial elements2 along the geodesic joining two 
fixed points; 

(4) G modulo a normal subgroup (isomorphic to a subgroup ofO(n—m), 
m=dim(L((j))) is the connected isometry group I0(S) of the totally geo­
desic submanifold S=(L(G)) which is a noncompact symmetric space of 
rank one; 

(5) G=I0(M). 

A consequence of Theorem 2 is the following 

THEOREM 3. Let M be a noncompact symmetric space of rank one and G 
be a subgroup of I0(M). If there is no point in M and no proper totally 
geodesic submanifold in M invariant under G, then G is either discrete or 
dense in I0(M). 

The above fact is related to Borel's density theorem [4] and Selberg's 
irreducible lattices [19]. 

We outline the proof of Theorems 1 and 2 by stating two main lemmas. 

LEMMA 1. Let M be a simply connected complete Riemannian manifold 
with K^c<0 such that I(M) acts effectively on M. Suppose that G is a 
subgroup of I(M) and (L(G)) = M. If L(G) contains more than two points, 
then the centralizer Z(G, I(M)) of G in I(M) is trivial If in addition, G 
does not have a common fixed point in M(oo), then G is semisimple. 

LEMMA 2. Let M be a noncompact symmetric space of rank one and 
G be a Lie subgroup of I0(M) such that M=(L(G)). Suppose that L(G) 
contains more than two points and G does not have a common fixed point 
in M(oo). Then either G is discrete or G=I0(M). 

2 The factored out normal subgroup of G contains elliptic elements which leave the 
geodesic pointwise fixed but may rotate other points in M. 
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Finally we state a theorem on the density of axial fixed points for 
Lobatchewsky manifolds. This fact is indispensable to geodesic and 
horospherical G-partition flows on a Lobatchewsky manifold. One can 
easily obtain a straightforward generalization of [10]. Furthermore one 
gets a corollary which generalizes a theorem [8] of Eberlein. 

THEOREM 4. Let M be a Lobatchewsky manifold and G be a subgroup of 
I(M). If G contains axial elements and G does not have a common fixed 
point in M(oo), then the fixed points of axial elements of G are dense in 
L(G)XL(G). 

COROLLARY. Let M be a Lobatchewsky manifold and G be a subgroup of 
I(M). If G does not have a common fixed point in M(co) and L(G) contains 
more than two points, then G contains a free group with an infinite number 
of generators. 
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