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ABSTRACT. The total change in the action of a slowly modulated 
oscillator is transcendentally small in the slowness parameter, if the 
modulation is smooth. To approximate it thus requires methods 
for bypassing the whole asymptotic expansion of the oscillator. 
A theorem on the exponential property of the action for analytic 
frequency variation and an outline of an elementary proof are 
reported. It rests on an asymptotic split of the angle variable into its 
algebraic and exponential parts. 

1. Introduction. The amplitude of a pendulum of slowly changing 
length has an asymptotic expansion in the small parameter s, but the 
action is an 'adiabatic invariant': its total change has the zero expansion, 
if the length changes smoothly enough. A host of asymptotic methods 
have been developed for such slowly modulated oscillators—stationary 
phase, WKB, two-timing, etc.—but all lead to asymptotic expansions and 
are helpless when an approximation to a transcendental property is 
needed. 

To promote development of methods for bypassing expansions to 
strike directly at subdominant properties, we report an extension of the 
theorem of Knorr and Pfirsch [1] on the exponential property for analyti­
cally smooth frequency and outline an elementary proof. An elementary 
proof of the transcendental property [1], [2], [3], [4] falls out as a bonus. 

The method rests on an asymptotic split of the angle variable into its 
algebraic and exponential parts and on a Fourier representation of the 
action change with respect to an intrinsic pendulum time. 

A precise order-estimate for the action change is reported for a class of 
frequency functions of practical interest (Theorem 2). 

2. Main results. Let q(t; e) be a solution of d2q/dt2+œ2q=0 with 
CO=CO(T), T=st, 0 < e < l , and let 2P(t) = (oq2+a)-1(dqldt)2. The following 
hypotheses will be distinguished. 
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(A) For T e R, co G R with gib co>0, co' e L(R) and co tends to limits 
as T - > ± oo. 

(B) For r G C, co is analytic on a strip A of positive minimal width 
about the real axis and co'->0 as |re r|->oo in A locally uniformly in im r. 

(B') For T G C, co2 is analytic on a neighborhood of the real axis in 
which re co > 0 at all re r for 

0 < im I i co(s) ds < const = m 

and in which oo2 has a root at i m j co=m>0; and co'->0 as |reT|->oo 
locally uniformly in im r. 

THEOREM 1. Under hypotheses (A), (B), 3d>0 such that 

limf(f) ~ P ( - ° = 0(e-") 
05 e-+Ofor all c<.d. 

THEOREM 2. t/wrfer hypotheses (A), (B'), 

l im f (°-P (-° - 0(e-
2-). 

*->oo P ( - 0 
Examples satisfying (A) and (B') are co(r)=M—(M—l)exp(—r2) 

with M = c o n s t > l [5] for which m=MjLi+ii7T1/2(M— l)erf(/^), JU2= 

log[M/(M—1)], and c o = l + £ t a n h r [6] for which w=7r/3, and co2= 
1 + (1 +2e-T)~1 [4] for which m=<jr. 

3. Rotation at real time. F(q, g , f ; £)=i|<jr2co cot Q generates a 
canonical transformation [7] to variables P, Q of action-angle type and 
Hamiltonian equations 

dQ dooldt . dP dcoldt 
(1) - ^ = ay + — '— sin 2Q, — = - P — — cos 2g 

d£ 2co df co 
whence 

(2) log P ( Q 0 ) = - r e f °° — r dr = - r e n(e) 
P(—OO) J-oo CO 

and the 'rotation' exp(2/'ö(f; s))=r(z) satisfies 

(3) r'(z) = îe-V + <£(r2 - 1), 2<f>{z) = Q'/Q 

in terms of 

(4) Z{T) = 2 f rco(cr) dcr, Q(z) = CO(T). 
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A frequency hypothesis of type (A) is now seen to be necessary for the 
pendulum to have classically defined actions as \t\-+co and real-valued 
total action change. 

LEMMA 1. If <j>(z) e L(R) nC(R) and is real-valued, 0 < £ < 1 , and 
A(z; a) satisfies (3) and A(OL; a )=0 , then 

f*co 

/(a) = 2 $ » r e A(z; a) dz = 0 
J—00 

for some a e R. 

With this choice of oc9 it follows that 

(5) UI» = 2/>(oc) f °° <j>(z)k(z)eizh dz 
J — 00 

where p(a)=r(a)exp(—z'oc/e), |/o| ===== 1, and 

k(z) = [r(z) - A(z; a)]e ' ( M , /7Ka) 

( 6 ) = fc(z) / Tl - r(oc) r < ^ ' ( s ~ a ) / 8 dsl 

by (3), with 

(7) h{z) = exp (l ('<Ks)A(s ; a) ds) . 

LEMMA 2. LWer hypothesis (A), lub^eJ?|^|->0 ay e-^0. 

COROLLARY 2a. lim^o &(z)==l uniformly in z. 

The action change is represented by (2), (5) as a Fourier transform 
from the asymptotic theory of which [8], [9] we deduce 

THEOREM 3. Transcendental smallness of the total action change 
requires frequency a)(r) E C°°(R); exponential smallness* (in the strict sense 
of Theorem 1) requires analyticity ofco(r). 

4. Analytic frequency. By (A), (B) and (4), £2(z) is a l s o analytic on a 
strip about the real axis of minimal width, say, d>0. By (3), (4), (6), (7), 
r(z), A(z; a), h(z) and k(z) are analytic on this strip. 

LEMMA 3. Under hypotheses (A), (B), Lemmas 2, 2a hold on any 
closed subset of {Orgim z<rf}. 

It follows from (6) that r—A is then exponentially small; conversely, 
A(z; a) must contain any algebraic part (as e-+0) of r(z). Hypothesis (B) 
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permits us to shift the path in (5) to fixed im z > 0 , whence Theorem 1 
follows. 

Hypothesis (B') permits us to shift the path to a fixed imz>2m, 
except for loops around the branch points zk with imzk=2m. Let D 
denote the domain bounded by this path and the real axis. The loops make 
independent contributions, and by comparison, the rest of the path 
makes only an exponentially small contribution. For Theorem 2, it 
therefore suffices to consider 

(8) TO) = e~iz«,eIl(e)lp = 2 f c/>(z)k(z)ei{z-z<>)/8 dz 

over a loop L around a point z0=2 $r
0° œ(a) da at which co(r) has an 

expansion 

C0(T) = CO0(T - T 0 W l + 2 COn(T - r0)") 

with integer v^l and co0=const^0. By (6), (7), evaluation of (8) requires 
information on the special rotation A(z; a) near such a singular point 
of (3). 

LEMMA 4. If p=dq/dt, dpldt=—co2q with ip(r(o()le)=^a)q(T(oL)le)^0 
(where r(z) denotes the inverse of (4) on R), then (ip—ooq)l(ip+a)q)= 
A(z; o£) on D. 

Thus T0 is a turning point of the differential equation of the pendulum. 
By the help of a comparison equation, its Stokes multipliers [10] and 
extension of Lemma 3 to any closed subset of D, lim£__̂ 0 T can finally be 
represented as a product of two convergent integrals computable purely 
locally from (3) on an «-neighborhood of z0. 

Details will appear in ZAMP. 
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