COMPLETION AND EMBEDDING BETWEEN PSEUDO (v, k, λ) -DESIGNS AND (v, k, λ) -DESIGNS

BY OSVALDO MARRERO

Communicated by Dock Rim, May 29, 1973

ABSTRACT. Each of four arithmetical conditions on the parameters v, k, and λ of a given primary pseudo (v, k, λ) -design is necessary and sufficient to ensure completion or embedding between the given design and some (v', k', λ') -design.

Let $X = \{x_1, \dots, x_v\}$, and let X_1, \dots, X_v be subsets of X. The subsets X_1, \dots, X_v are said to form a (v, k, λ) -design if

each X_j $(1 \le j \le v)$ has k elements; any two distinct X_i , X_j $(1 \le i, j \le v)$ intersect in λ elements; and $0 \le \lambda < k < v - 1$.

Such a design is completely determined by its *incidence matrix*; this is the (0, 1)-matrix $A = [a_{ij}]$ defined by taking $a_{ij} = 1$ if $x_j \in X_i$ and $a_{ij} = 0$ if $x_j \notin X_i$. More information about these combinatorial designs is available, for example, in [2] and [5].

Let $Y = \{y_1, \dots, y_v\}$, and let Y_1, \dots, Y_{v-1} be subsets of Y. The subsets Y_1, \dots, Y_{v-1} are said to form a pseudo (v, k, λ) -design if

each Y_i $(1 \le j \le v-1)$ has k elements; any two distinct Y_i , Y_j $(1 \le i, j \le v-1)$ intersect in λ elements; and $0 < \lambda < k < v-1$.

The incidence matrix of a pseudo (v, k, λ) -design is defined in the same manner as the incidence matrix of a (v, k, λ) -design.

The consideration of pseudo (v, k, λ) -designs was suggested during the course of study of "modular hadamard matrices" [3], [4]. Related work has been published by Bridges [1] and Woodall [6].

A pseudo (v, k, λ) -design is "almost" (its incidence matrix lacks one row) a (v, k, λ) -design; this suggests the consideration of "completion and embedding" between these two combinatorial designs. Let A be the incidence matrix of a pseudo (v, k, λ) -design. Then it *might* be possible to

AMS (MOS) subject classifications (1970). Primary 05B05, 05B30, 62K10.

Key words and phrases. Block designs, (v, k, λ) -designs, pseudo (v, k, λ) -designs, completion and embedding of block designs.

"complete" the v-1 rows of A by adjoining one additional row to A, and possibly performing some operations on the rows or columns of A, so that the incidence matrix of some (v, k', λ') -design is obtained; also, it *might* be possible that the incidence matrix of some $(v-1, k', \lambda')$ -design is "embedded" in A. This paper presents a theorem and a conjecture dealing with such completion and embedding. No proof of the theorem below is given in this paper. A more comprehensive paper dealing with pseudo (v, k, λ) -designs is being planned by this author.

When $k=2\lambda$, the existence of a pseudo (v, k, λ) -design implies and is implied by the existence of some (v', k', λ') -design; and, if the parameters of a given pseudo (v, k, λ) -design satisfy $v\lambda = k^2$, then they must satisfy $k=2\lambda$ [3]. A pseudo (v, k, λ) -design is called *primary* or *nonprimary* according to whether its parameters satisfy $v\lambda \neq k^2$ or $v\lambda = k^2$, respectively. Thus, it is the existence of primary pseudo (v, k, λ) -designs which remains unresolved.

The incidence matrix of a pseudo (v, k, λ) -design can be obtained from the incidence matrix A of a given (v', k', λ') -design by any one of the following four simple techniques:

- 1. a column of +1's is adjoined to A;
- 2. a column of 0's is adjoined to A;
- 3. a row is discarded from A; or
- 4. a row is discarded from A and then the k' columns of A which had a +1 in the discarded row are complemented (0's and +1's are interchanged in these columns).

These four are the only known techniques for the construction of pseudo (v, k, λ) -designs. The initial observation which led to the theorem below is that there is a simple arithmetical condition on the parameters v, k, and λ which is *necessary* for the incidence matrix of a given primary pseudo (v, k, λ) -design to be obtained from the incidence matrix of some (v', k', λ') -design by one of the aforementioned techniques; it can be shown that each one of these conditions is *also sufficient*, thus answering the completion and embedding problem under consideration in these four cases.

THEOREM. The incidence matrix of a given primary pseudo (v, k, λ) -design can be obtained from the incidence matrix of some (v', k', λ') -design by the ith $(1 \le i \le 4)$ technique above if and only if the parameters v, k, and λ satisfy the respective ith condition below:

- 1. $(k-1)(k-2)=(\lambda-1)(v-2)$;
- 2. $k(k-1) = \lambda(v-2)$;
- 3. $k(k-1) = \lambda(v-1)$; or
- 4. $k=2\lambda$.

A primary pseudo (v, k, λ) -design is said to be of type i $(1 \le i \le 4)$ if its parameters satisfy the *i*th equation in the statement of the above theorem. There are examples of pseudo (v, k, λ) -designs of each of these four types that are not of any of the other three types. It is possible for a pseudo (v, k, λ) -design to be of more than one type.

The condition that the parameters v, k, and λ satisfy the *i*th $(1 \le i \le 4)$ equation in the statement of the theorem above is *not* sufficient to ensure the existence of a pseudo (v, k, λ) -design, since none of these conditions is sufficient to ensure the existence of a (v', k', λ') -design with the appropriate parameters v', k', and λ' .

This author has conjectured that given a primary pseudo (v, k, λ) -design, then completion or embedding between the given design and some (v', k', λ') -design must always be possible. The precise statement is:

Conjecture. The parameters of a given primary pseudo (v, k, λ) -design must satisfy at least one of the equations in the statement of the above theorem.

It is known that the above conjecture is valid whenever $\lambda = 1$.

REFERENCES

- 1. W. G. Bridges, Near 1-designs, J. Combinatorial Theory (A) 13 (1972), 116-126.
- 2. M. Hall, Jr., Combinatorial theory, Blaisdell, Waltham, Mass., 1967. MR 37 #80.
- 3. O. Marrero and A. T. Butson, Modular hadamard matrices and related designs, J. Combinatorial Theory Ser. A. (to appear).
- 4. —, Modular hadamard matrices and related designs. II, Canad. J. Math. 24 (1972) 1100-1109.
- 5. H. J. Ryser, Combinatorial mathematics, Carus Math. Monograph Series, no. 14, Wiley, New York, 1963. MR 27 #51.
- 6. D. R. Woodall, Square λ -linked designs, Proc. London Math. Soc. (3) 20 (1970), 669–687. MR 41 #8264.

DEPARTMENT OF MATHEMATICS, FRANCIS MARION COLLEGE, FLORENCE, SOUTH CAROLINA 29501