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ABSTRACT. Each of four arithmetical conditions on the param-
eters v, k, and 4 of a given primary pseudo (v, k, A)-design is neces-
sary and sufficient to ensure completion or embedding between the
given design and some (v’, k’, A')-design.

Let X={x,, -, x,}, and let X3, - - - , X, be subsets of X. The subsets
X, -, X, are said to form a (v, k, 4)-design if

each X; (1=<j=v) has k elements;
any two distinct X, X; (1=i, j/<v) intersect in A elements; and
0=A<k<v—1.

Such a design is completely determined by its incidence matrix; this is the
(0, 1)-matrix A=[a,,] defined by taking a;;=1 if x; € X; and a,;=0 if
x; ¢ X;. More information about these combinatorial designs is available,
for example, in [2] and [5].

Let Y={y;,***, ).}, and let Yy,+-, Y, ; be subsets of Y. The sub-
sets Yy, +, Y, are said to form a pseudo (v, k, A)-design if

each Y; (1=j=v—1) has k elements;
any two distinct Y;, Y; (1=i, jSv~—1) intersect in A elements; and
0<i<k<v—1.

The incidence matrix of a pseudo (v, k, A)-design is defined in the same
manner as the incidence matrix of a (v, k, A)-design.

The consideration of pseudo (v, k, A)-designs was suggested during
the course of study of ““modular hadamard matrices’ [3], [4]. Related work
has been published by Bridges [1] and Woodall [6].

A pseudo (v, k, A)-design is ““almost” (its incidence matrix lacks one
row) a (v, k, A)-design; this suggests the consideration of “‘completion and
embedding” between these two combinatorial designs. Let 4 be the in-
cidence matrix of a pseudo (v, k, 1)-design. Then it might be possible to

AMS (MOS) subject classifications (1970). Primary 05B05, 05B30, 62K 10.
Key words and phrases. Block designs, (v, k, A)-designs, pseudo (v, &, A)-designs,
completion and embedding of block designs.
Copyright © American Mathematical Society 1974

103



104 OSVALDO MARRERO [January

“complete” the v—1 rows of 4 by adjoining one additional row to A4,
and possibly performing some operations on the rows or columns of 4,
so that the incidence matrix of some (v, k', A')-design is obtained; also,
it might be possible that the incidence matrix of some (v—1, k', A')-design
is “embedded” in A. This paper presents a theorem and a conjecture
dealing with such completion and embedding. No proof of the theorem
below is given in this paper. A more comprehensive paper dealing with
pseudo (v, k, A)-designs is being planned by this author.

When k=24, the existence of a pseudo (v, k, 1)-design implies and is
implied by the existence of some (v', k', A')-design; and, if the parameters
of a given pseudo (v, k, 2)-design satisfy vA=k?, then they must satisfy
k=22 [3]. A pseudo (v, k, A)-design is called primary or nonprimary
according to whether its parameters satisfy vA5£k? or vA=k?, respectively.
Thus, it is the existence of primary pseudo (v, k, 4)-designs which remains
unresolved.

The incidence matrix of a pseudo (v, k, A)-design can be obtained from
the incidence matrix 4 of a given (v, k', A’)-design by any one of the
following four simple techniques:

1. a column of +1’s is adjoined to 4;

2. a column of 0’s is adjoined to 4;

3, a row is discarded from A4; or

4. arow is discarded from A and then the k£’ columns of 4 which had a
+1 in the discarded row are complemented (0’s and +1’s are interchanged
in these columns).

These four are the only known techniques for the construction of pseudo
(v, k, A)-designs. The initial observation which led to the theorem below
is that there is a simple arithmetical condition on the parameters v, k,
and A which is necessary for the incidence matrix of a given primary pseudo
(v, k, A)-design to be obtained from the incidence matrix of some
(', k', A)-design by one of the aforementioned techniques; it can be
shown that each one of these conditions is also sufficient, thus answering
the completion and embedding problem under consideration in these
four cases.

THEOREM. The incidence matrix of a given primary pseudo (v, k, 2)-
design can be obtained from the incidence matrix of some (', k', A')-design
by the ith (1=i=<4) technique above if and only if the parameters v, k, and
A satisfy the respective ith condition below:

1 (k=D(k—=2)=(2-1)(v—2);

2. k(k—1)=A(v—2);

3. k(k—1)=A(v—1); or

4. k=2,
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A primary pseudo (v, k, A)-design is said to be of type i (1=i=4) if its
parameters satisfy the ith equation in the statement of the above theorem.
There are examples of pseudo (v, k, A)-designs of each of these four types
that are not of any of the other three types. It is possible for a pseudo
(v, k, 2)-design to be of more than one type.

The condition that the parameters v, k, and 1 satisfy the ith (1=Zi=<4)
equation in the statement of the theorem above is not sufficient to ensure
the existence of a pseudo (v, k, A)-design, since none of these conditions is
sufficient to ensure the existence of a (v', k', A")-design with the appropriate
parameters v’, k', and A'.

This author has conjectured that given a primary pseudo (v, k, A)-
design, then completion or embedding between the given design and some
(v', k', A’)-design must always be possible. The precise statement is:

CONJECTURE. The parameters of a given primary pseudo (v, k, 2)-
design must satisfy at least one of the equations in the statement of the
above theorem.

It is known that the above conjecture is valid whenever A=1.
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