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1. Introduction. A motion in M of a subspace N consists of an 
(ambient) isotopy of N through M which ultimately returns N to itself. 
Here we study the problem of determining all essentially different motions 
and the natural group structure on this set which is induced when two 
motions are multiplied by performing them on N in succession. 

The aim of this paper is to calculate the group of motions of links in the 
3-sphere and in 3-space. In §3 this is reduced, for "links with generalized 
axis", to a calculation of isotopy classes of homeomorphisms of a surface 
punctured in a finite number of points. In §4, generators are given for the 
motion group of a torus link in S3, and generators and relations are given 
for the motion group of a torus knot in R3 (in fact I can give generators 
and relations for both groups). 

We begin with a definition of motion groups based on Dahm's original 
definition : 

2. Motion groups. Let M be a manifold, N a subspace contained in 
the interior of M. Denote by H(M) the group of autohomeomorphisms of 
M with the compact open topology, where if M has boundary dM, all 
homeomorphisms are required to fix dM pointwise; and let H(M; N) be 
the subgroup of maps restricting to an autohomeomorphism of N, with 
the subspace topology. The notation J^(M) and J4?(M; N) is used for 
the group of path components of H{M) and H(M; N), respectively. 
Denote the identity map of M by \M'M-^M. 

A motion of N in M is a path ft in H{M) beginning at / 0 = 1 M and 
ending at f where /i(A0=N. The motion ƒ is said to be a stationary motion 
ofNin MifVt,ft(N)=N. To compose two motions, translate the second 
by multiplication in the group H (M) so that its initial endpoint coincides 
with the terminal endpoint of the first, and multiply as in the groupoid of 
paths. Define the inverse f ~x of a motion f to be the inverse path of the path 
ƒ in H(M), translated so that its initial endpoint is \M. Finally, we say that 
the motions ƒ and g are equivalent if the path g'1 o ƒ is homotopic modulo 
its endpoints to a stationary motion. Thus stationary motions of N in M 
are to be considered trivial; i.e., they are equivalent to the trivial path 
mapping to the point \M> The group of motions of N in M, denoted 
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J({M\ N), is the set of equivalence classes of motions of N in M with 
multiplication induced by composition of motions. 

To illustrate, we remark that the group of motions of an interior point 
in a manifold M is the group rr^M), and that the group of motions of n 
distinct points in the interior of a 2-disk is the «th braid group Bn. 

More generally, let ^f{M; Nl9 - " 9 Nn) denote the group of path 
components of the space H(M; Nx) n • • • nH(M; Nn) of autohomeo-
morphisms of M which restrict to autohomeomorphisms of Nt for all /, 
and analogously define the group J((M\ Nl9 • • • , Nn) of motions of the 
«-tuple of subspaces (Nl9 • • • , Nn) in M, where each N{ is returned to 
itself by these motions. 

3. Motions of links in S3. The most obvious motion of a link L in Rz or 
S3 is the 2TT rotation, written 2TT. This consists of rotating a 3-ball contain
ing the link and centered at the origin by 2w radians about the z-axis. 
The class {ITT} either is trivial or has order two in the motion group 
JK{S3\ L), and it always has order two in the motion group Ji{Rz\ L) 
provided the link L is nontrivial. 

The next most obvious collection of motions arises from moving a 
link in the complement of one of its axes. Since an axis is an unknotted 
simple closed curve about which the link L winds, the intersection of L 
with a suitable disk which the axis bounds is a finite set of points; it is 
natural to ask when a motion of these points in the disk will extend to a 
motion of L in the complement of its axis, whether nontrivial motions 
of the points can extend to trivial motions of L, and which motions of L 
can be performed in the complement of an axis. These questions motivate 
the following definition and theorems. 

DEFINITION. The simple closed curve A in Sz—L is said to be a general
ized axis for the link L if 

(1) S3—A fibers over the circle with fiber homeomorphic to the interior 
of a surface S in >S3 with boundary A ; 

(2) The surface S may be chosen so that the intersection SnL of the 
link with S is a finite set of points P; 

(3) the fibration is given by the m a p / : [0, 1] x 5'->5'3 satisfying 
(i) ft(A)=A 2iriAft\A-^A is a homeomorphism for all t e [0, 1], 

(ii) f0:S->S is the identity and fx\S-+S is a homeomorphism, 
(iii) / | ( 0 , l ) x (S—A) is a homeomorphism onto Sz—S, 
( i v ) / ( [ 0 , l ] x P ) = L . 

An axis for L is simply a generalized axis which is unknotted. 
We may assume without loss of generality that the map fx : (S, P)-> 

(S, P) is the identity on the boundary A of S. Denote the map fx in 
H(S;P) by 2 , and let J^^(S;P) be the centralizer of {2} in Jf(S;P). 
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Define the subgroup ^^(S; P) of motions of P in S to consist of classes 
of those motions ƒ such that S _ 1 of o 2 defines a motion equivalent t o / . 
If S is a disk, then there is a unique motion class a whose terminal 
endpoint is a representative of the class {2}. We now have: 

THEOREM la. The sequence 

(*) 1 -> e ^ s ( 5 ; P) -> ^ ( 5 3 ; L, ^) -> ^ ( S 3 ; ,4) 

is exact if S is not a disk. 

THEOREM lb. If S is a disk (and hence A is an axis of L), the sequence 

(**) uT£(S; P) -> J({S3\ L, A) -+ J({S3\ A) = Z2 

Z5* exflcf, and the kernel of the map ^^(S; P)-+^(S3; L, A) is contained 
in the subgroup of ^E(S; P) generated by a and c, the generator of the 
center of the braid group ^(S; P), where a, C->{2TT}. 

THEOREM 2. The sequence 

(***) 3fx(S; P) -> J({S3\ L, A)^Z2 

is exact, and the kernel of the map J^^(S; P)-><J£(S3\ L, A) is contained 
in the subgroup generated by {2} and c, the generator of the center of the 
braid group Jf(S; P), where C-+{2TT} and {2}-^{2TT}. 

DISCUSSION OF THEOREMS 1 AND 2. The exact sequences (*) and (**) 
assert that the classes of motions of P in S which extend to motions of L 
in the complement of the generalized axis A comprise the subgroup 
Ji^iS'^P) of J((S\P), where the homomorphism induced from 
motions of P in S to motions of (L, A) in S3 is injective if S is not a 
disk, and otherwise has image equal to all of ^(S3; L, A) or a subgroup 
of J((S3\ L, A) of index 2. Theorems 1 and 2 are most useful when L is 
the union of a sublink L' and a generalized axis A of L'. For these links 
with generalized axis it is often true that the motion groups <Jf(S3; L) and 
*Jf(S3; L'', A) are the same; for example if A has a different knot type 
from the components of L. In this case, the exact sequence (***) calculates 
~£(S3, L) to be a specified quotient of the group J^^(S; P) of homeo-
morphisms of a punctured surface, or a Z2-extension thereof. 

4. The group of motions of a torus link in *S3. A torus link is a link 
which may be embedded without self-intersections on the surface of a 
torus canonically embedded in S3. A torus knot is a torus link having one 
component. Each such knot is of type (p,q) for some relatively prime 
positive integers p and q, where a (p9 q) torus knot wraps p times in the 
direction of the longitude and q times in the direction of the meridian. 
A type (2, 3) torus knot is illustrated in Figure 1. 
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A (2, 3) torus knot 

FIGURE 1 

Every torus link is equivalent, by a deformation of S3, to k torus knots 
of the same type inscribed, respectively, on concentric tori of increasing 
radius canonically embedded in Sz. Numbering the tori in order of increas
ing radius, we say that the Zth torus knot lies on the ith torus. If the type of 
each knot is (p9 q), the link is said to be a (p9 q, k) torus link. 

The Zth torus associated with a (p,q,k) torus link L separates Sz into 
two solid tori, whose core circles are called the canonical axes of L; the 
jp-axis is that canonical axis linking the Zth torus knot/? times, the#-axis, 
the one linking the Zth knot q times. These axes are independent of choice 
of Z. 

We will now begin to calculate the group of motions of a torus link 
in Sz. Let L denote a (p9q,k) torus link consisting of the (p, q) torus 
knots Ll9 • • • , Lk; let Av denote the/?-axis, AQ the #-axis of L: 

THEOREM 3. The natural homomorphisms J({SZ\L, A^)-^JK{SZ\ L) 
and ^#(5 3 ; L, AQ)->^(SS; L) induced by restricting motions of L together 
with a canonical axis in Sz to motions of L in Sz, are surjective. 

THEOREM 4. If pj&\9 then the natural homomorphism ^{Sz\ L, AQ)-> 
*Jf(Sz; L) induced by restricting motions of (L, AQ) in Sz to motions of L 
in Sz is an isomorphism. Similarly, ^#(S3 ; L, A2))-^^(SZ; L) is an iso
morphism ifqj£\. 

PROOF SKETCH OF THEOREMS 3 AND 4. In preparation for the use of 
Theorem 2, let Z / = L 2 U - • • KjLk and note that the torus knot Lx is a 
generalized axis for both L' and L' \jA^\JAq. Now if S is a spanning 
surface for Lx as in the definition of generalized axis, and PQ=AQnS, 
Pp=ApnS, the autohomeomorphism 2 of S is a periodic map of period 
pq with singular orbits PQ (on which 2 has period q) and Pv (on which 
2 has period p). Call a homeomorphism ƒ e H(S) symmetric if ƒ com
mutes with 2 . Then the group J^^(S; P) is naturally isomorphic to the 
group of isotopy classes (through symmetric maps) of symmetric maps. 
Hence the homomorphism J^^(S; P, PQ)->^^(S; P) induced by inclusion 
is surjective, and in casep^ 1, is an isomorphism. (This result is symmetric 
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with respect to p and q.) The above in conjunction with Theorem 2 
provides most of the proof. 

COROLLARY 5. The motion group o f a type (p, q, k) torus link in Ss is 
generated by the following motions: 

(1) i-rotation: The ith concentric torus is rotated by lirjq radians on 
itself about its p-axis. 

(2) if interchange : The ith torus knot is moved onto the jth concentric 
torus and the jth torus knot onto the ith concentric torus, so that the ith 
and jth torus knots are interchanged, A cross sectional view of this motion 
is the motion of the points of intersection ofL with a disk spanning the p-axis, 
shown in Figure 2. 

FIGURE 2 

(3) flip : The p-axis ofL is flipped, carrying each torus knot to itself with 
the reversed orientation. We use the invertibility of torus knots and links 
in the construction of this motion. 

COROLLARY 6. Let Kbe a(p,q) torus knot in R3. The group J({RZ\ K) 
of motions of K in Rz is 

{a, bj^airy.a* = ¥ = / 2 = {2TT}, {2TT}< = 1, 

/ { 2 T T } / - I = {2TT}, ƒ*ƒ-! = a-\fbf-* = ft-*} 

where / = 1 if either p or q is even, and z=2 if both p andq are odd', f is the 
flip, the motion a is the l-rotation of Corollary 5, and b is a composite 
mr1 o r o m of a motion m taking the (p, q) torus knot to the (q,p) torus 
knot, with the l-rotation r of the (q,p) torus knot. 
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