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GLOBAL DEFORMATION OF POLARIZED VARIETIES1 

BY T. MATSUSAKA 

1. Classically, the works of Riemann, Hurwitz, and Severi show that 
the set of complete nonsingular curves of genus g can be parametrized 
into an algebraic family of nonsingular curves, parametrized by an irre­
ducible algebraic variety (allowing many curves of the family to be iso­
morphic to each other), and that isomorphism classes of these curves 
depend on 3g—3 parameters (g>l). Moreover, two complete nonsingular 
curves of different genera cannot be members of an algebraic family 
parametrized by an irreducible algebraic variety. These imply, among 
other things, that the topological as well as the differential geometric 
nature of such curves can be characterized completely by the genus. 
Moreover, it is known from the result of Baily [2], [3] that distinct 
isomorphism classes of such curves of genus g form an irreducible alge­
braic variety of dimension 3g—3 (1 if g=l ) . 

When we attempt to deal with similar problems for complete nonsingu­
lar and projectively embeddable varieties of higher dimensions, we en­
counter difficulties of higher magnitude. Limiting ourselves to the category 
of algebraic varieties for characteristic zero, Siegel [18], Satake [16] and 
Baily [3] have shown that similar results are true for polarized Abelian 
varieties. We call a pair (V9 X) of a complete nonsingular variety V and 
a set 2£ of K-divisors a polarized variety if 2C satisfies the following 
conditions : 

(i) X contains a nondegenerate divisor X (ample in the sense of [5]); 
(ii) A F-divisor Y is in SC if and only if r Y=sX (numerical equivalence) 

for some integers r, s. 
A divisor Y in 9C is called a polar divisor. 2£ contains a divisor X0 such 

that a F-divisor Y is in X if and only if Y=sX0 for some integer ^ and a 
nondegenerate polar divisor X can be expressed as X=rX0 with a positive 
integer r (cf. [10]). Such a polar divisor X0 is called a basic polar divisor. 
Already there are many examples of algebraic surfaces which indicate 
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that similar results as in the case of curves cannot be obtained without 
at least an additional structure of polarization. Then, is it possible, with 
the additional structure of polarization, to obtain similar results? 

2. In order to describe our problem a little more in detail, let us recall 
the definition of the Hubert characteristic polynomial of a polarized 
variety (V93T) (cf. [11]). Let X0 be a basic polar divisor of it. Its 
numerical equivalence class is uniquely determined and the polynomial 
X(V, J£(mX0)), the Euler-Poincaré characteristic of V with coefficients in 
the invertible sheaf determined by mX0, is uniquely determined by our 
polarized variety. This polynomial is called the Hubert characteristic 
polynomial of (F, 3T). In the case of surfaces, the coefficients of this 
polynomial are completely determined by the self-intersection number 
XQ2) of X0, by the virtual arithmetic genus pa(X0) of X0 and by the arith­
metic genuspa(V) of V. By relaxing our requirements a little, we can ask the 
following questions, corresponding to the case of curves and polarized 
Abelian varieties. 

(I) Is it possible to parametrize the set of polarized varieties with a 
given Hubert characteristic polynomial, up to isomorphisms, by a finite 
number of irreducible algebraic varieties ? 

(II) If the answer to (I) is affirmative, how many parameters do the 
isomorphism classes of such polarized varieties depend on? 

(III) If the answer to (I) is affirmative, and when t/is an algebraic variety 
of finite type which parametrizes the family in (I), is it possible to con­
struct the variety of moduli? (That is, when we introduce in t/an equiva­
lence relation on points induced by isomorphisms of fibres, is it possible 
to find the quotient space of U as an algebraic variety of finite type ?) 

Anticipating (III), we introduced the concept of g-varieties (cf. [9]) 
which is a little wider in concept than algebraic varieties and on which 
some important algebro-geometric operations can be performed (e.g. 
intersection theory). Then we showed that once (I) is solved, (III) can 
be solved in the category of ô-varieties, if w e exclude all ruled varieties 
(cf. M. Artin's work [1]). Whether a solution of (III) can be found in 
general within the category of algebraic varieties seems to be an unsolved 
question as far as we know. But the answer could quite possibly be negative. 
(II) is in general an unsolved problem, but in some important concrete 
cases solutions are given in [7]. Because of these situations, let us concen­
trate here on the solution of (I) and also on the case of characteristic zero. 

3. The affirmative answer to (I) in the case of curves comes essentially 
from the Riemann-Roch theorem on curves and from Chow-v.d. Waerden's 
Chow form or from Grothendieck's Hilbert scheme (cf. [4], [5"|). The 
answer to (I) for polarized Abelian varieties can be obtained when we 
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replace the Riemann-Roch theorem above by a theorem of Lefschetz that 
3JHs ample whenever X is nondegenerate (cf. [81). The case of a polarized 
surface was more difficult but we could settle it affirmatively, in our 
joint paper with Mumford, using many available results on nonsingular 
surfaces (cf. [14]). Especially, we found that the Riemann-Roch inequality 
on surfaces played an important, if not decisive, role. 

In relation to (i), we can formulate and ask the following questions. 
(Ij) Let F be a complete nonsingular variety, X a, nondegenerate 

divisor on V and P(m)=x(V, 3?(ml)). Is it possible to find a constant c, 
depending only on the polynomial P(x), such that hl(V, <S?(mX))=0 for 
/>0if m>cl 

(12) Let V, X be as above. Is it possible to find a constant c', depending 
only on the polynomial P(x), such that the module L(mX)=H0(V,J?(mX)) 
defines a projective embedding if ra>c'? 

We have solved (I2) which yields an affirmative answer to (I) by the 
aid of the main theorem on Chow-forms or Hilbert schemes. Also (Ix) 
is a consequence of (12). But a direct solution of (1^ is much desired. 
Not only would it simplify our proofs but it would also give deeper 
insight into the Riemann-Roch theorem even in the special case when X 
is a nondegenerate divisor. 

Lack of strong vanishing theorem (Ix) forced us to use a different but 
strong vanishing theorem of Kodaira : When F is a nonsingular projective 
variety and X a nondegenerate divisor on V, hl(V, j£?(X+K(V)))=0 for 
z>0, where K(V) is a canonical divisor of V (cf. [6]). This forced us 
to assume that the characteristic of the universal domain is zero. In 
relation to this, let us consider the following problem. 

(13) Let F be a complete nonsingular variety in characteristic p and X 
a nondegenerate F-divisor. Is it possible to find a constant c*, depending 
only on the polynomial X(V, &(mX)) such that ¥(V9 &{X+K{V)))<c*1 
Or is it possible to find an absolute constant c* with the above property? 

We are hopeful that we have found an idea to solve (I3). As to the possi­
bility of generalizing Kodaira's vanishing theorem as it is to the case of 
characteristic p, the chance looks rather dim (cf. [15]). 

4. As to the detail of solutions of (I2) in the case of characteristic 0, 
we refer the reader to my paper [13], which has appeared in the American 
Journal of Mathematics. We shall touch on the rough ideas very briefly. 

When U is a variety and M a module of rational functions on U of finite 
dimension, let/0, • • •, fm be a basis of M. ThQnx->(f0(x) :/i(x) : • • • : fm(x)) 
defines a rational map of U into a projective space. We shall call this 
the rational map defined by M which is unique up to a projective trans­
formation. 
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Let V, X, P(x) be as in the problem (I2). When the polynomial P'(x) 
is defined by 

P\m) = x(K ^(mX + K(V)))9 

P(m) = (-l)nP\-m) by the duality theorem of Serre (cf. [17]). From 
this we see that 

d=X^n\ f = 7(Ar(w-1\ K(V)) 

are uniquely determined by P(x). Moreover, we can find a constant cQ, 
depending only onP(x) such that for m^c0, h°(V, ^(mX+K(V)))=Pf(m), 
P'(m + l)>P'(rn). We first derive the inequalities 

(1) dvKjn + £ld)* ^ h°(V9 £>(umX + uK(V))) ^ P\u(m - c0) + c0) 

for m^c 0 , provided that the rational map fu>m defined by the module 
H°(V, £P(umX+uK(V))) maps V on a variety of dimension L From these, 
we see at once that if m>max(c0, \S\/d), there is a constant c(m)9 depending 
only on P(x) and m, such that fu%m maps F on a variety of dimension n 
if u>c(m). 

We then fix a positive integer m0>c0 , such that 

2l7*(m - c0)/(m + Sid) > 1 

for m>m0 and let the left hand side be § : l+e 0 with e0>0 for such m. 
Define cx by c(m0). Consider, for s>cl9 m > 0 the following diagram 

where / s =/ s m o , Ws the image of V byfs and gm8t8 the rational map which 
makes the above diagram generically commutative. 

Assume, for a moment, that deg( / s )>l , deg(gws>s)==l and that 

deg(gws,s(C)) < (1 + s0)m • deg(C'), 

where C (resp. C ) is a hyperplane section of Wms (resp. Ws). Then, we 
can find two polynomials Qn(y9 x), Q'n(x) with nonnegative rational 
coefficients of degree < « in x and linear in y, determined uniquely by 
P(x), such that 

(2) l(smm0X + smK(V)) 

< (<î//f !)(1 + 60)»m» + Ôn(<5, (1 + e0)m) + Q'n((l + e0)m), 
where 

l(smm0X + smK(V)) = h°(V, ^(smm0X + smK(V))) 
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and ô = (dl2)sn(m0 + f/d)w. When we compare this with our first inequalities 
(1), we see the existence of a positive integer e(s), which depends only on 
P(x), e0 and s such that for m^e(s), (1) and (2) are incompatible and 
hence deg(gwss(C))g:(l+%)ra • deg(C') for such m. Using this result, 
we compare the degrees of Ws and Wms under our assumptions and get 

deg Wms ^ m - 1 deg(gws,s(C)) ^ mn(l + e0) • deg W89 

if s>c1 and m^e(s). In general, we have the following inequality: 

dsn(m0 + S/d)» ^ deg(/s) • deg Ws 

for s>c1. This, together with the above inequalities show that deg( / s )>l , 
and the series of equalities 

fegigH • •.«,..«! • • .*,_!•) = l w i t h U = e(sti ' ' ' '<-i) 

cannot continue to hold indefinitely. When we select r0 to be the least 
positive integer satisfying dsn(m0 + Sld)n<(l+s0)

r for r^r0, the series 
of equalities stops when i>r0. From this we can show that the following 
theorem is true. 

THEOREM 1. There is a pair (m0, c2), c^.cl9 of positive integers, which 
can be determined by P(x) alone, such that H°(V, J£(mm0X+mK(V))) 
defines a birational transformation of V whenever m^.c2. 

5. Let, as before, fm be the rational map of V into a projective space 
defined by the module H°(V, J?(mm0X+mK(V))) where ra^c2. Then 
fm is a birational transformation. But there may be a subvariety A of 
codimension 1 on V such that its proper image fm[A] by fm has lesser 
dimension than n—l. Such A will be called a contractible subvariety of 
codimension 1 for fm. This causes some problems. For this we have the 
following result. 

THEOREM 2. Let cz be the constant, which can be determined by P(x) 
alone, such that c3^c2 and that for m^c3, 

n-l 

P'(m(m0 - c0) + c0) - 2 2 dm^m* + £/</)* - n > 0. 

Let c 4 = 2 r - 1 dc%
8(m0 + Sld)i + l. Then there is a submodule M of 

/f°(F, J5f(c4c37)), Y=m0X+K(V), such that the rational map defined by 
the module M is a birational transformation of V and that it has no con-
tractible subvariety of codimension 1 on V. 

Let us denote by êv the set of birational transformations of V into 
a projective space which is defined by a submodule of H°(V, ^(cAc3Y)), 
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without contractible subvariety of codimension 1 on V. Whenever g- e Sv, 
we have the following result. 

PROPOSITION. deg(g(T))^c5—(n—1) and g(V) is a subvariety of the 
projective space of dimension c5, where cb is given by 

e* = dcïcî(mo + £ld)n + n - 1. 

Let us denote by S P the set of pairs (V, X) of a complete nonsingular 
variety V and a nondegenerate F-divisor X such that 

X(V,&{mX)) = P(m). 

The above results in the Proposition show that the set of g(V), g e Sv, 
as (V, X) ranges in 2 P , is covered by a finite union of irreducible algebraic 
families of nonsingular subvarieties in the projective space of dimension c5. 
Cutting down this finite union of irreducible algebraic families as much as 
possible by imposing algebro-geometric conditions satisfied by g(V), 
g e S'y and (V, X) e S P , we show with a slight technical modification that 
the set of g(V) forms a finite union of irreducible algebraic families of 
nonsingular subvarieties of the projective space. From these last families 
we construct a finite union F of irreducible algebraic families which satisfies 
the following properties : 

(i) A member U of F is a nonsingular subvariety of a projective space. 
(ii) When we polarize U so that a hyperplane section is a polar divisor, 

the Hubert characteristic polynomial of this polarized variety is P(x). 
(iii) When (V, X) e S P , there is a member U of F and an isomorphism 

h of V on U such that h(rX) is a hyperplane section of U for some positive 
integer r. 

From this we get the following main theorem at once. 

THEOREM 3. Let (V, X) be a pair of a complete nonsingular variety 
and a nondegenerate V-divisor X. Let P(m) = %(F, JSf (ml)). Then there is a 
constant c, which depends only on P(x)9 such that for m^ic, the module 
H°(V, J£(mX)) defines a projective embedding of V. 
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