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The objective of this note is to announce a class of generalized multipliers 
between Lp-spaces of locally compact groups and some characterizations 
obtained by the author which generalize the classical representations of 
Figà Talamanca, Gaudry, Rieffel and others. If G is a locally compact 
group, let B(G), 1 ^ p ^ oo, denote the corresponding Lebesgue spaces 
relative to a fixed Haar measure dx (with the convention that dx is 
normalized if G is compact). Let Lx for x e G denote the left translation 
operator on B(G) given by Lxf(y) = f(x~ 1y). Let G, H, and K be locally 
compact groups and let 6 : K -• G and \jj : K -> H be continuous group 
homomorphisms. Let 1 ^ p, q <; oo. We define a (6,p; \//9 q)-multiplier 
to be a bounded linear transformation T\B(G) -» !?(//) such that 
ToLe{z) = L+(z)oT for all zeK. Let Hom*(Lp(G), 13(H)) denote the 
Banach space with the operator norm of all (6,p; \//9 ^-multipliers of 
H(G) into 13(H). When G = H = K and 0 = ^ = idG (the identity map 
on G) then a (idG,/?; idG, ^-multiplier is a "classical" (p, ^-multiplier of 
LP(G) into L«(G). 

In [1] and [2], Figà-Talamanca and Gaudry have shown the "classical" 
multiplier space HomG(Lp(G), 13(G)) is isometrically isomorphic to the 
Banach space dual of the Banach space Aq

p(G) [14, Definitions 3.2 and 
5.4] of functions on G for LCA groups G where 1/q 4- l/q' = 1. Rieffel 
[14] has extended this representation to amenable locally compact 
groups (using an approximation theorem of C. S. Herz when G is possibly 
noncompact). The representation for general G is still an open problem. 

In this note we describe extensions of the above cited representations to 
the space of (6,p; i//, ^-multipliers. Our approach parallels that of 
Rieffel in [14] by using tensor products of Banach modules. We assume 
familiarity with the general results concerning tensor products of Banach 
modules in [13]; specifically, if V and W are left and right Banach A-
modules for a Banach algebra A then by [13, Corollary 2.13] 

(1.1) (V®A W)* £ Horn^K W*), 
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where W* is considered as a left Banach .4-module under the adjoint 
action induced by the right action of A on W and Hom^K, W*) is the 
Banach space of A -module bounded linear transformations of V into 
W*. 

We proceed to define module actions of I}(K) on LF(G) and 13(H). 
For 1 ^ p ^ oo, regard B(G) as a left Banach L1(i^)-module under the 
action (ƒ, g) -> f*eg where 

ƒ ** 0W = f f(z)g(e(zy1x) dz (x e G), 
JK 

and || ƒ •eflll, ^ 11/Hi llflfllp. For 1 ^ 9 ^ oo, regard B(H) (= L«(//)) as 
the right Banach //(/O-module under the action (ƒ, h) -> f~ x^h where 
/~(z) = / (z" 1 ) A^z" 1 ) , z e K . Note that U(G) and L«(//) are also left and 
right K-modules [13, Definition 1.1(b)] under the actions (z, g) ~> L9(z)g 
and (z, /*) -• L^(z)-iA, respectively, and that when 1 ^ /?, </ < oo, these 
actions are strongly continuous and uniformly bounded [13, Definition 
1.1(d)], and the essential Banach L^iQ-actions they induce [13, p. 447] 
are precisely the above described L1(X)-actions on IF(G) and B(H). 
Finally, when 1 ^ q < oo, note that the adjoint action of ƒ G Ü(K) on 
!?'(//), under which 13(H) becomes a left Banach L^XJ-module, is 
^-convolution b y / ; a similar statement applies to the K-module actions. 

Since the K-module and L1(X)-module tensor products of IF(G) and 
B(H) are isomorphic for 1 ^ /?, q < oo [13, Theorem 3.14], we have by 
relation (1.1) the isometric isomorphism 

(B(G) ®LHK) B(H)T s HomK(H(G), 13(H)) 

for all 1 ^ /?, q < oo and 1/q + l/#' = 1. Consequently, analogous to 
the classical case [14], it suffices to obtain a concrete representation of the 
tensor space LP(G) ®Li(jK) B(H). 

Let g denote the closed subgroup and closure in G x H of the subgroup 
{(ö(z), \j/(z))\z e X} . Let G ® K //denote the locally compact homogeneous 
space, (G x H)/Q, of left cosets of Q in G x / / . Equip G x H with the 
product Haar measure dx (x) </y, and let 4"? *0 denote the Haar measure 
on Q. According to [16, Chapter 8, §§1 and 2] there is a positive quasi-
invariant measure dq(x, y)* on G ® # //corresponding to a strictly positive 
continuous solution #(x, y) on G x H to the functional equation 

q(xu, yv) = ?(x, >>) AQ(w, u)/AG(w) AH(v), (x, y) e G x / / , (w, t;) G g 

such that $GxIiFdx® dy = j G ® K H TQqF dq(x, y)' for all F e Ü(G x H) 
where TQq is the canonical map Ü(G x //) -• L*(G ®K / /) given by 

TQ qF(x, y)- = f F p ^ d(u, v), (x, y)' = (x, y)/Q. 
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If G and H are compact then one can take q = 1 and d(x, y)' = dq(x, v)# is 
invariant [16, Chapter 8, §1.4]. Define ƒ A g(x, y) = f(x)g(y) for func
tions f on G and g on H. 

For reasons of generality we consider Beurling algebras on locally 
compact groups [15]. Let Ll

w(G), L*(H), and L\{K) denote the Beurling 
algebras on G, 7/, and K with respect to (upper semicontinuous) weight 
functions on G, H, and X, respectively (see [15]). 

LEMMA 1. L^G) is a left Banach Lç(K)-module under the action 
( ƒ> G) ~* f *e G tf and only if there is an M ^ 0 such that 

(i) (o{0(z)x) ^ M£(z)co(x) for loc. a.e. (z, x) e K X G. 
L*(JFJ) is a right Banach Lç(K)-module under the action (ƒ, h) -> f~ *^ /z 
if and ott/y if there is an M ^ 0 swc/i t/zatf 

(ii) Y\{xj/{z)~ly) ^ MÇ(z)rj(y) for loc. a.e. (z, y) e K x ƒ/. 

Before stating one of the main results let 

co* (8>ç*7*(x, y)' = infoo((xM)~1)f/((iyi?)~1) 

for (x, y)* = (x, y)/Q. Then co* ®ç ?/* is a positive upper-semicontinuous 
function bounded away from zero on G ®K H. Let L ^ 0 * ( G ® x H) be 
the Lebesgue space I)(G ®K H, co* ®c q* dq(x, y)'). 

THEOREM 1. Let œ, rj, and £ be weight functions on the locally compact 
groups G, H, and K, respectively, satisfying (i) and (ii) of Lemma 1. Then 

U(G) ®L.(K) L\(H) S L i . 8 { ,.(G ®K H) 

where the isomorphism is linear and isometric, and the element g (g) h 
corresponds to TQq(g~ A h~). 

The isomorphism of Theorem 1 was proved (without the condition of 
isometry) for LCA groups G, H, and K, continuous open homomorphisms 
9 and \j/9 and for constant one weight functions by Gelbaum [4] and 
Natzitz [12]. In [10] this author has characterized the tensor module 
LX(G) ®Li(K) I}(H) for all LCA groups G, H, and K and arbitrary algebra 
actions of Ü(K) on Ü(G) and Ü(H), respectively. Analogous representa
tions for tensor products of commutative semigroup algebras have been 
obtained by Lardy [11] and for //*-algebras by Grove [6]. 

A proof of Theorem 1 amounts to showing that the closed linear sub-
space / of L\G) <x)y L\H) whose quotient with Ll{G) ®y L\H) defines 
L*(G) ®LHK) L^ifl) [13, §2.2] corresponds under the Grothendieck 
[5, p. 90] and Johnson [9] (cf. [3, Remark 3, p. 304]) isomorphism 
I}(G) ®y L\H) £ L\G x H) to the closed linear subspace J\G x H, Q) 
of I}(G x H), whose quotient with I}(G x H) is isomorphic to 
L\G ®K H) (cf., [16, Chapter 8, §2.3(6)]; this establishes the isomorphism 
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for the case in which the weight functions are constantly one. The general 
case is handled in a similar fashion but requires an extension of the iso
morphism Li(G/H) s Ll(G)/Jl(G9H) of Reiter [16, Chapter 3, §7.4] 
for closed normal subgroups H of G to admit arbitrary closed subgroups 
H o f G . 

LEMMA 2. If G, H, p, and q satisfy one of the following three conditions: 
(i) G and H are compact and 1 ^ p, q < oo, 

(ii) G is compact, 1 S P < oo, andq = 1, 
(iii) H is compact,p = \,and\ ^ q < oo, 

J/2É7? Töf€(0~ A /T) 6 Lr(G ®K # ) (w/*ere r = min(p, #)) /or a// # e LP(G) 

l|Tfliifo~ A h~)\\r£ \\g\\p\\k\\r 

and (g, h) -> TQq(g~ A h~) is an Ll(K)-balanced (bounded) bilinear map. 

DEFINITION 1. With the hypotheses (i), (ii) or (iii) of Lemma 2, let 
^%G ®K H) denote the space of all F e E(G ®K H) which have at least 
one expansion of the form F = £^° TQq(g~ A h~) where (gn) g B{G), 
(hn) £= !?(//), and £^° \\gn\\p \\hn\\q < oo (with the expansion for F converg
ing in the norm of E(G ®K H)). If $4p(G ®K H) is equipped with the norm 

F - IIFII = i n f | | \\gn\\p \\hn\\q:F = | TQ^g; A A;)! , 

then it is a Banach space. 
The second of our main results is 

THEOREM 2. If G, H, p, and q satisfy one of the conditions (i), (ii) or (iii) 
of Lemma 2 then 

Lp(G) ®LHK) B(H) g* sf%G ®K H) 

where the isomorphism is algebraic and isometric and the element g ® h 
corresponds to TQq(g~ A h~). 

The proof of Theorem 2 is based on Theorem 1 and a lemma concerning 
the approximation of (0, ƒ?; \/t, ^-multipliers by (0, 1; \j/, oo)-multipliers. 
We show to every {9,p; \j/, ^-multiplier T for 1 ^ p < oo, 1 S q S °o, 
there is a net (7^) of (0, 1 ; \j/, oo)-multipliers such that the restriction of Tx 

to the space J f (G) of continuous functions on G with compact support has 
a (unique) bounded linear extension to a (0, p; ij/, q)-multiplier Sx and the 
(SA) converge ultra-weakly to T. This approximation lemma is used to show 
that the canonical map 

00 00 

U{G) ®LHK) E(H) B £ g„ <S> K t - £ TQJg; A K) e jéyG ®K H) 
1 1 

has trivial kernel. 
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Consider the classical case when G = H = K and 0 = iff = idG. Set 
q(x,y) = AG(y_1) and note that g = G and T((X,J>)/0) = xy~x is a 
topological isomorphism of G ®G G onto G. In this case it can be easily 
shown that 

TQ,q{g~ A / T ) 0 = g~ * %(•)), g,he X(G). 

Thus (for compact G) it is seen that the adjoint of t , T*, induces an iso
metric isomorphism of the space sé\(G ®G G) with the space Aq

p(G) 
[14, Definition 3.2]. As an application of Theorem 2 we have 

L\R) ®lHz) B(Aa) s .«/«(£„), (1 ^ q < oo), 

where K = reals, Z = integers, Aa = a-adic integers [7, (10.2)], £ a = 
a-adic solenoid [7, (10.12)], and where 9 and \j/ are the natural inclusions 
of Z into R and Afl, respectively. 

Our third main result is an extension of the classical result of Hörmander 
[8, Theorem 1.1] which asserts that HomG(Z/(G), Lq(G)) = {0} if G is non-
compact and 1 ^ q < p < oo. We require first 

DEFINITION 2. K is said to be (0, \j/)-compact if there is a subset A in K 
such that 9(A) and \j/(K ~ A) are precompact in G and H, respectively. 

THEOREM 3. Let 1 ^ q < p < oo. /ƒ K is (9,il/)-noncompact, then 
RomK(U(G), 13(H)) = {0}. 

COROLLARY I. If K is (0, ij/)-noncompact, 1 < p, q < oo, and 
1/p + I/? < 1, ffe/i L*(G) ®LHK)L\H) = {0}. 

The proof of Theorem 3 is based on the equivalence of (0, ^-non-
compactness with the property that to each pair of compact subsets U in 
G and V in H, there is a Z G K such that (0(z)U) n U = 0 and 
(^(z)K) n F = 0 . At this point the Hörmander method of "shifting" 
applies. 

In another paper, this author and W. D. Pepe consider the problem of 
characterizing these generalized multipliers when the range space is 
I}(H) or M(H), and thereby obtain generalizations of Wendel's theorem. 
The results are similar to those obtained above. 

Detailed proofs of the above results will appear elsewhere. 
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