EIGENFUNCTION EXPANSIONS FOR NONDENSELY DE-FINED OPERATORS GENERATED BY SYMMETRIC ORDINARY DIFFERENTIAL EXPRESSIONS¹

BY EARL A. CODDINGTON

Communicated by Fred Brauer, December 18, 1972

1. Nondensely defined symmetric ordinary differential operators. This note is a sequel to [2]; the notations are the same. Let L be the formally symmetric ordinary differential operator

$$L = \sum_{k=0}^{n} p_k D^k = \sum_{k=0}^{n} (-1)^k D^k \bar{p}_k, \qquad D = \frac{d}{dx},$$

where the p_k are complex-valued functions of class C^k on an interval a < x < b, and $p_n(x) \neq 0$ there. In the Hilbert space $\mathfrak{H} = \mathfrak{L}^2(a, b)$ let S_0 be the closure in \mathfrak{H}^2 of the set of all $\{f, Lf\}$ for $f \in C_0^{\infty}(a, b)$, the functions in $C^{\infty}(a, b)$ vanishing outside compact subintervals of a < x < b. This S_0 in a closed densely defined symmetric operator whose adjoint has the domain $\mathfrak{D}(S_0^*)$, the set of all $f \in C^{n-1}(a, b)$ such that $f^{(n-1)}$ is absolutely continuous on each compact subinterval and $Lf \in \mathfrak{H}$. For $f \in \mathfrak{D}(S_0^*)$, $S_0^*f = Lf$. If $M_0 = S_0^* \oplus S_0$, then

$$\dim(M_0)^{\pm} = \dim \mathfrak{D}((M_0)^{\pm}) = \dim \nu(S_0^* \mp iI) = \omega^{\pm},$$

say (v(T) = null space of T). Thus $0 \le \omega^{\pm} \le n$, and dim $M_0 = \omega^+ + \omega^- \le 2n$. Let \mathfrak{F}_0 be a subspace of \mathfrak{F} , dim $\mathfrak{F}_0 = p < \infty$, and define the operator S, with $\mathfrak{D}(S) = \mathfrak{D}(S_0) \cap (\mathfrak{F} \ominus \mathfrak{F}_0)$, via $S \subset S_0$. We see that (2.1) of [2] is satisfied and Theorem 1 of [2] is applicable to S. If $\omega^+ = \omega^- = \omega$, which we now assume, then Theorem 2 of [2] is also applicable. For $u, v \in \mathfrak{D}(S_0^*)$ we have Green's formula

$$\int_{y}^{x} (\bar{v}Lu - u\overline{Lv}) = [uv](x) - [uv](y),$$

where [uv] is a semibilinear form in $u, u', \ldots, u^{(n-1)}$ and $v, v', \ldots, v^{(n-1)}$. From this it follows that [uv](x) tends to limits [uv](a), [uv](b) as x tends to a, b. Then we may write

$$\langle uv \rangle = (Lu, v) - (u, Lv) = [uv](b) - [uv](a).$$

AMS (MOS) subject classifications (1970). Primary 47E05, 34B25.

Key words and phrases. Symmetric ordinary differential operator, eigenfunction expansion, symmetric system of ordinary differential operators.

¹ This research was supported in part by NSF Grant No. GP-33696X.

Thus, in Theorem 2 of [2], (ii) represents a set of boundary-integral conditions, and (iii) (or the expression for H_s) shows that both boundary and integral terms appear in the expression for the operator part of H.

2. **Eigenfunction expansions.** For any selfadjoint subspace extension $H = H_s \oplus H_{\infty}$ of S in \mathfrak{S}^2 , as given in Theorem 2 of [2], we have $H_s = \int_{-\infty}^{\infty} \lambda \ dE_s(\lambda)$, where $\{E_s(\lambda)\}$ is the spectral family of projections in $\mathfrak{S} \ominus H(0)$ for H_s . We can explicitly describe the $E_s(\lambda)$ in terms of a basis for the solutions of $(L - \ell)u = \varphi \in \mathfrak{S}_0$, $\ell \in C$. Let $\varphi_1, \ldots, \varphi_p$ be an orthornormal basis for \mathfrak{S}_0 , and let c be fixed, a < c < b. Let $s_j(x, \ell)$, $a < x < b, \ell \in C$, $j = 1, \ldots, n + p$, satisfy

$$(L-\ell)s_j=0, \quad s_j^{(k-1)}(c,\ell)=\delta_{jk}, \quad j,k=1,\ldots,n,$$
(2.1)

$$(L-\ell)s_{n+j}=\varphi_j, \quad s_{n+j}^{(k-1)}(c,\ell)=0, \quad j=1,\ldots,p, \quad k=1,\ldots,n.$$

Theorem 1. For any selfadjoint subspace extension $H = H_s \oplus H_\infty$ of S in \mathfrak{S}^2 , and s_j satisfying (2.1), there exists an $(n+p) \times (n+p)$ matrix-valued function ρ on the real line \mathbf{R} which is Hermitian, nondecreasing, and of bounded variation on each finite interval. Let $\Delta = \{v \mid \mu < v \leq \lambda\}$ and $E_s(\Delta) = E_s(\lambda) - E_s(\mu)$, where λ , μ are continuity points of E_s . For $f \in C_0(a,b) \cap (\mathfrak{H}) \oplus H(0)$ we have

$$E_s(\Delta)f(x) = \int_{\Delta} \sum_{j,k=1}^{n+p} s_k(x, \nu) \hat{f}_j(\nu) d\rho_{kj}(\nu),$$

where $\hat{f}_i(v) = (f, s_i(v))$.

For vector-valued functions $\zeta = (\zeta_1, \ldots, \zeta_{n+p}), \eta = (\eta_1, \ldots, \eta_{n+p})$ on R we can introduce

$$(\zeta, \eta) = \int_{-\infty}^{\infty} \sum_{j,k=1}^{n+p} \zeta_j(v) \overline{\eta_k(v)} \, d\rho_{kj}(v).$$

Since ρ is nondecreasing, $(\zeta, \zeta) \ge 0$ and we can define the norm $\|\zeta\| = (\zeta, \zeta)^{1/2}$, and consider the Hilbert space $\mathfrak{L}^2(\rho) = \{\zeta \mid \|\zeta\| < \infty\}$.

THEOREM 2 (EIGENFUNCTION EXPANSION). Let H be as in Theorem 1 and let $f \in \mathfrak{H} \ominus H(0)$. Then $\hat{f} = (\hat{f}_1, \ldots, \hat{f}_{n+p})$ converges in norm in $\mathfrak{L}^2(\rho)$, $||f|| = ||\hat{f}||$, and

$$f(x) = \int_{-\infty}^{\infty} \sum_{i,k=1}^{n+p} s_k(x, \nu) \hat{f}_j(\nu) d\rho_{kj}(\nu),$$

where the integral converges in norm in $\mathfrak{L}^2(a, b)$.

3. Systems of differential operators. The results in Theorems 1 and 2 carry over to S generated by a system of ordinary differential operators. We indicate the situation for a first order system. Let $L = P_1D + P_0$, where P_1 , P_0 are $m \times m$ matrix-valued functions on a < x < b, with $P_1 \in C^1(a, b)$, $P_0 \in C(a, b)$, and $P_1^{-1}(x)$ existing for a < x < b. Thus L operates on vector-valued functions considered as $m \times 1$ matrices. We assume L is formally symmetric, i.e., $P_1^* = -P_1$, $P_0 - P_0^* = P_1'$. The relevant Hilbert space is $\mathfrak{H} = \mathfrak{H}_m^2(a, b)$, the set of all $m \times 1$ matrix-valued functions u on u

$$\int_{y}^{x} v^{*}Lu - (Lv)^{*}u = [uv](x) - [uv](y),$$

where $[uv](x) = v^*(x)P_1(x)u(x)$. The operator $S_0 \subset S_0^*$ has a domain consisting of all $f \in \mathfrak{D}(S_0^*)$ such that $\langle fg \rangle = 0$ for all $g \in \mathfrak{D}(S_0^*)$, where $\langle fg \rangle = (Lu,v) - (u,Lv)$. For $M_0 = S_0^* \ominus S_0$ we have $0 \leq \dim M_0 \leq 2m$. If $\mathfrak{S}_0 \subset \mathfrak{S}$, dim $\mathfrak{S}_0 = p < \infty$, we can define S as in (2.2) of [2], and then (2.1) of [2] is valid. Theorems 1 and 2 of [2] can then be applied.

We describe concretely the regular case where a, b are finite, P_1 , P_0 are continuous on the closed interval $a \le x \le b$, and $P_1^{-1}(x)$ exists there. Then $\mathfrak{D}(S_0^*)$ is the set of all $f \in \mathfrak{H}$ which are absolutely continuous on $a \le x \le b$ and $Lf \in \mathfrak{H}$, and $\mathfrak{D}(S_0)$ is the set of those $f \in \mathfrak{D}(S_0^*)$ satisfying f(a) = f(b) = 0. In this case $\dim(M_0)^{\pm} = m$, and Theorem 2 of [2] takes the following form.

THEOREM 3. In the regular case of a first order system L as given above, let H be a selfadjoint subspace extension of S in \mathfrak{H}^2 , with dim H(0) = s. Let $\varphi_1, \ldots, \varphi_p$ be an orthornormal basis for \mathfrak{H}_0 , with $\varphi_1, \ldots, \varphi_s$ a basis for H(0). Then $H = \{\{h, Lh + \varphi\}\}$ such that $h \in \mathfrak{D}(S_0^*)$, $\varphi \in \mathfrak{H}_0$, and satisfying

- (i) $(h, \Phi_0) = 0$,
- (ii) Mh(a) + Nh(b) + (h, Z) = 0,
- (iii) $\varphi = \Phi_0 c + \Phi_1 [(h, \Psi) + Ch(a) + Dh(b)],$

where Φ_0 , Φ_1 are matrices with columns $\varphi_1, \ldots, \varphi_s$ and $\varphi_{s+1}, \ldots, \varphi_p$ respectively; c, M, N, C, D are matrices of complex constants of order $s \times 1$, $m \times m$, $m \times m$, $(p - s) \times m$, $(p - s) \times m$ respectively, and

- (a) $\operatorname{rank}(M:N) = m$,
- (b) $MP_1^{-1}(a)M^* NP_1^{-1}(b)N^* = 0$,

(c)
$$\Psi = \Phi_1 \{ E + \frac{1}{2} [DP_1^{-1}(b)D^* - CP_1^{-1}(a)C^*] \}, E = E^*,$$

(d) $Z = \Phi_1 [DP_1^{-1}(b)N^* - CP_1^{-1}(a)M^*].$

Conversely, if there exist M, N, C, D, E satisfying (a), (b) and Ψ , Z are defined by (c), (d), then H defined by (i)–(iii) is a selfadjoint extension of S with dim H(0) = s. The operator part H_s of H is

$$H_s h = Lh - \Phi_0(Lh, \Phi_0) + \Phi_1[(h, \Psi) + Ch(a) + Dh(b)].$$

Here (M:N) is an $m \times 2m$ matrix obtained by setting the columns of M next to those of N in the order indicated, and E is a $(p-s) \times (p-s)$ matrix of constants. The operator extensions H are those given by the case s=0, and these properly include those studied by A. M. Krall [3, Theorem 5.1]. He considered the operator cases when $P_1(x)=-iI$, and $\Psi=0$, E=0, i.e., only those operators H which do not contain an integral term in the operator. (In his condition (5.5), p. 444 of [3], which is the analog of (d) above, -i should be replaced by +i.)

The analogs of the expansion results, Theorems 1 and 2, are valid for the general singular case. Let $s_j(x, \ell)$, a < x < b, $\ell \in C$, satisfy $(L - \ell)s_j = 0$, $s_j(c, \ell) = e_j$ for $j = 1, \ldots, m$, and $(L - \ell)s_{m+j} = \varphi_j$, $s_{m+j}(c,\ell) = 0$ for $j = 1, \ldots, p$, where a < c < b and e_j is the unit vector with 1 in the jth row. Let $S(x,\ell)$ be the matrix with columns $s_1(x,\ell), \ldots, s_{m+p}(x,\ell)$.

Theorem 4. Let L be a first order system, and $H=H_s\oplus H_\infty$ a self-adjoint extension of S in \mathfrak{S}^2 , $\mathfrak{S}=\mathfrak{L}^2_m(a,b)$, with $H_s=\int_{-\infty}^\infty \lambda \, dE_s(\lambda)$ in $\mathfrak{S}\ominus H(0)$. There exists an $(m+p)\times (m+p)$ matrix-valued function ρ on \mathbf{R} , which is Hermitian, nondecreasing, and of bounded variation on each finite interval. If $\Delta=(\mu,\lambda]$, and μ , λ are continuity points of E_s , then for $f\in C_0(a,b)\cap (\mathfrak{S}\ominus H(0))$,

$$E_s(\Delta)f(x) = \int_{\Delta} S(x, v) d\rho(v) \hat{f}(v), \qquad \hat{f}(v) = (f, S(v)).$$

If $f \in \mathfrak{H} \ominus H(0)$, then $\hat{f} \in \mathfrak{L}^2(\rho)$, $||f|| = ||\hat{f}||$, and

$$f(x) = \int_{-\infty}^{\infty} S(x, v) d\rho(v) \hat{f}(v).$$

4. Selfadjoint extensions in larger spaces. In either the *n*th order case or first order system case, if $\dim(M_0)^+ \neq \dim(M_0)^-$ there are no selfadjoint extensions of S in \mathfrak{H}^2 . However, there always exist such extensions in a larger space $(\mathfrak{H} \oplus \mathfrak{H})^2$, where \mathfrak{H} is a Hilbert space. Let $H = H_s \oplus H_\infty$ be any such with $H_s = \int_{-\infty}^{\infty} \lambda \, dE_s(\lambda)$ on $(\mathfrak{H} \oplus \mathfrak{H}) \oplus H(0)$. Let P be the orthogonal projection of $\mathfrak{H} \oplus \mathfrak{H}$ onto \mathfrak{H} , and define $F_s(\lambda)f = PE_s(\lambda)f$, for $f \in \mathfrak{H} \ominus PH(0)$, $\lambda \in \mathbb{R}$. The proofs of Theorems 1, 2, 4 involve a

nontrivial adaptation of the method used in our earlier paper on operators [1], and we can avoid the use of the results of A. V. Straus mentioned there. Thus we can show that these theorems are valid for any H in $(\mathfrak{H} \oplus \mathfrak{R})^2$, with E_s replaced by F_s , and $\mathfrak{H} \oplus H(0)$ replaced by $\mathfrak{H} \oplus H(0)$. Hence it is not necessary to assume $\dim(M_0)^+ = \dim(M_0)^-$.

Detailed proofs will appear elsewhere.

REFERENCES

- 1. E. A. Coddington, Generalized resolutions of the identity for symmetric ordinary differential operators, Ann. of Math. (2) 68 (1958), 378–392. MR 21 #2094.
- 2. ——, Selfadjoint subspace extensions of nondensely defined symmetric operators, Bull. Amer. Math. Soc. 79 (1973).
- 3. A. M. Krall, Differential-boundary operators, Trans. Amer. Math. Soc. 154 (1971), 429-458. MR 42 #6328.

Université de Paris VI, Paris, France

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024