
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 79, Number 5, September 1973 

EIGENFUNCTION EXPANSIONS FOR NONDENSELY DE­
FINED OPERATORS GENERATED BY SYMMETRIC 

ORDINARY DIFFERENTIAL EXPRESSIONS1 

BY EARL A. CODDINGTON 

Communicated by Fred Brauer, December 18, 1972 

1. Nondensely defined symmetric ordinary differential operators. This 
note is a sequel to [2] ; the notations are the same. Let L be the formally 
symmetric ordinary differential operator 

L=ipkD
k=i(-lfDkpk, D^~, 

k=o fc=o dx 

where the pk are complex-valued functions of class Ck on an interval 
a < x < b, and pn(x) / 0 there. In the Hilbert space § = 22{a, b) 
let S0 be the closure in § 2 of the set of all {ƒ, Lf} for ƒ e C$(a, b), the 
functions in C°°(a,b) vanishing outside compact subintervals of a < x < b. 
This S0 in a closed densely defined symmetric operator whose adjoint has 
the domain 3>(S$), the set of all ƒ e Cn~ \a,b) such that f { n ~ 1 } is absolutely 
continuous on each compact subinterval and Lfe9). For feT)(S$), 
S%f=Lf. If M 0 = S* 0 S0, then 

dimlMo)* = dim D P o ) 1 ) = dim v(S* + il) = co±
9 

say (v(T) = null space of T). Thus 0 ^ co± :g n, and dim M 0 = co+ + 
co~ ^ 2n. Let £>0 be a subspace of § , dim Jr>0

 = P < °°> a n d define 
the operator S, with D(S) = D(S0) n ( § 0 §0), via S c S0. We see that 
(2.1) of [2] is satisfied and Theorem 1 of [2] is applicable to S. If co+ = 
co~ = co, which we now assume, then Theorem 2 of [2] is also applicable. 
For u,v e D(S*) we have Green's formula 

Ç* __ 
(i;Lu — MLD) = [wu](x) — [MD](^), 

where [uv~\ is a semibilinear form in u, u',. . . , w(n~1} and v, v',. . . , i;(n~1}. 
From this it follows that [wt;](x) tends to limits [wt;](a), [MU](&) as x 
tends to a, b. Then we may write 

{uv} = (Lu, v) — (u, Lv) = [uv~\(b) — [uv~\(a). 
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Thus, in Theorem 2 of [2], (ii) represents a set of boundary-integral 
conditions, and (iii) (or the expression for Hs) shows that both boundary 
and integral terms appear in the expression for the operator part of H. 

2. Eigenfunction expansions. For any selfadjoint subspace extension 
H = Hs © H^ of S in § 2 , as given in Theorem 2 of [2], we have Hs = 
J^^ A dEs(X), where {ES(X)} is the spectral family of projections in 
§ © H(0) for Hs. We can explicitly describe the ES(X) in terms of a basis 
for the solutions of (L — £)u = cp e § 0 , / e C . Let cpl9 . . . , cpp be an 
orthornormal basis for § 0 , and let c be fixed, a < c < b. Let Sj(x, / ) , 
a < x < fr, *f e C, 7 = 1, . . . , n + p, satisfy 

(L - /)Sj. = 0, s<*- "(c, /) = 5 jk, 7, fc = 1,. . . , n, 

(2.1) 

( L - / ) 5 M + J . = <pj9 s f + 7 ) (c ,0 = 0, j = l , . . . , p , fc=l,...,n. 

THEOREM 1. For any selfadjoint subspace extension H = Hs® H^ 
of S in § 2 , and Sj satisfying (2.1), there exists an (n + p) x (rc + p) 
matrix-valued function p on the real line R which is Hermitian, nondecreasing, 
and of bounded variation on each finite interval. Let A = {v | /i < v ^ A} 
and ES(A) = ES(X) — Es(p), where A, fi are continuity points of Es. For 
ƒ e C0(a, fe) n (§ © H(0)) we farce 

:s(A)/(x) = f i f 5k(x, v)//v) dftj(v), 

where ffy) = ( ƒ, s/v)). 

For vector-valued functions C = (Ci, • • • , £,+„), n = Oh, • • • , rjn+p) 
on /? we can introduce 

(C,ri) 
oo n + p 

Z Cj{v)nk(v) dpkj{v). 
— oo j , fc= 1 

Since p is nondecreasing, (£, 0 = ^ 0 and we can define the norm ||£|| = 
(C, 0 1 / 2 , and consider the Hubert space 22(p) = {Ç | IICII < oo}. 

THEOREM 2 (EIGENFUNCTION EXPANSION). Let H be as in Theorem 1 and 
let f e § © H(0). TTien f = (fl9 . . . , fn+p) converges in norm in 22(p), 
\\f\\ = \\fhand 

ÇCQ n + p 

f{x) = £ sk(x, v)//v) dp4J(v), 
J - oo j , fc= 1 

where the integral converges in norm in £2(a, fc). 
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3. Systems of differential operators. The results in Theorems 1 and 2 
carry over to S generated by a system of ordinary differential operators. 
We indicate the situation for a first order system. Let L = P^ -f P 0 , 
where P1 ? P 0 are m x m matrix-valued functions on a < x < b, with 
P r G C 1 ^ , b), P 0 G C(a, b), and P ^ W existing for a < x < b. Thus L 
operates on vector-valued functions considered as m x 1 matrices. 
We assume L is formally symmetric, i.e., P* = — P1,P0 — P^ = P\. 
The relevant Hilbert space is § = £,^(a, fo), the set of all m x 1 matrix-
valued functions u on a < x < b such that (w, u) < oo. In general, for 
any two matrix-valued functions F, G such that G*F is defined and can 
be integrated, we define (P, G) — \b

a G*F. The domain of the operator 
5J consists of all ƒ G § which are absolutely continuous on each compact 
subinterval, and Lf e § ; for ƒ G D(S*)> 5 g / = Lf. Green's formula in 
this case gives 

v*Lu — (Lv)*u — \uv\{x) — [MD](V), 

where [tw](x) = v:¥(x)P1(x)u(x). The operator S0 c S* has a domain 
consisting of all ƒ G X>(Sg) such that < fg} = 0 for all g e D(S*), where 
<ƒ#> = (Lw,r) - (u,Lv).ForM0 = S$ Q S0wehaveO ^ dim M 0 ^ 2m. 
If §o Œ Ô» dim § 0 = /? < oo, we can define S as in (2.2) of [2], and then 
(2.1) of [2] is valid. Theorems 1 and 2 of [2] can then be applied. 

We describe concretely the regular case where a, b are finite, P' l5 P 0 

are continuous on the closed interval a ^ x ^ fo, and Pjf *(x) exists there. 
Then D(S$) is the set of all ƒ G § which are absolutely continuous on 
a ^ x ^ b and Lf e § , and D(S0) is the set of those ƒ G D(S*) satisfying 
f (a) = ƒ (6) = 0. In this case dim(M0)± = m, and Theorem 2 of [2] 
takes the following form. 

THEOREM 3. In the regular case of a first order system L as given above, 
let H be a self adjoint subspace extension of S in § 2 , with dim H(0) = s. 
Let <pl9 . . . , (Ppbe an orthornormal basis for § 0 , with q>l9 . . . , cps a basis 
for H(0). Then H = {{h, Lh + cp}} such that h G D(Sg), <pe§ 0 , and 
satisfying 

(i) (fc, * 0 ) = 0, 
(ii) Mh(a) + JVfe(fc) + (ft, Z) = 0, 

(iii) 9 - O0c + «ipfc, V) + Ch(a) + Dft(fo)], 
where <D0, Ox are matrices with columns cp1, . . . , <ps and ç>s+1, . . . , <pp 

respectively; c, M, iV, C, D are matrices of complex constants of order 
sx 1, m x m, m x m,(p — s) x m, (p — s) x m respectively, and 

(a) rank(M:iV) = m, 
(b) MPï\a)M* - NPî\b)N* = 0, 
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(c) ¥ = 0,{E + \[DPï\b)D* - CPrH^C*]} , JB = £*, 
(d) Z = O ^ D P r 1 ^ ) ^ * ~ CPf V ) M * ] . 
Conversely, if there exist M, AT, C, D, £ satisfying (a), (b) and *F, Z are 

defined by (c), (d), t/zerc H defined by (i)-(iii) is a self adjoint extension of S 
with dim H(0) = 5. The operator part Hs of H is 

Hsh = Lh- <b0(Lh, ®o) + Gi[(fc> **0 + C/z(a) + Dh(b)]. 

Here (M:N) is an m x 2m matrix obtained by setting the columns 
of M next to those of AT in the order indicated, and E i sa {p — s) x (p — s) 
matrix of constants. The operator extensions H are those given by the case 
s = 0, and these properly include those studied by A. M. Krall [3, 
Theorem 5.1]. He considered the operator cases when P^x) = —il, 
and *F = 0, E = 0, i.e., only those operators H which do not contain an 
integral term in the operator. (In his condition (5.5), p. 444 of [3], which 
is the analog of (d) above, — i should be replaced by + z.) 

The analogs of the expansion results, Theorems 1 and 2, are valid 
for the general singular case. Let s/x, £), a<x<b, £eC, satisfy 
(L - f)sj = 0, Sj{c9 t) = Cj for j = 1, . . . , m, and (L - f)sm+j = <pj9 

sm+J{c, £) = 0 for j = 1,. . . , p, where a < c < b and ej is the unit vector 
with 1 in thejth row. Let S(x, £) be the matrix with columns sx(x, / ) , . . . , 

THEOREM 4. Let L be a first order system, and H = Hs® H œ a self-
adjoint extension of S in § 2 , Jr> = £^(a, b), with Hs = f0?^ X dEs(X) in 
9) © H(0). There exists an (m + p) x (m + p) matrix-valued function p 
on R, which is Hermitian, nondecreasing, and of bounded variation on each 
finite interval. If A = (ju, X], and \x, X are continuity points of Es, then for 
/eC o(a ,fo)n(§©H(0)) , 

)ƒ(*) = [. £,(A)ƒ(x) = S(x, v) dp(v)ƒ(v), ƒ(v) = ( ƒ, S(v)). 

/ƒƒ G § 0 //(0), thenfeZ2(p), \\f\\ = || ƒ ||, and 

ƒ (x) - S(x, v) dp(v)ƒ(v). 

4. Self adjoint extensions in larger spaces. In either the nth order case 
or first order system case, if dim(M0)+ ^ dim(M0) ~ there are no selfadjoint 
extensions of S in § 2 . However, there always exist such extensions in a 
larger space (§ © ft)2, where ft is a Hubert space. Let H = Hs © H^ 
be any such with Hs = j-^X dEs(X) on (§ © ft) © #(0). Let P be the 
orthogonal projection of § © ft onto § , and define Fs(X)f = PEs(X)f 
for ƒ G § © PH(0), XeR. The proofs of Theorems 1, 2, 4 involve a 
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nontrivial adaptation of the method used in our earlier paper on operators 
[1], and we can avoid the use of the results of A. V. Straus mentioned 
there. Thus we can show that these theorems are valid for any H in 
(Ô 0 ft)2, with Es replaced by Fs, and £ 0 H(0) replaced by § 0 PH(0). 
Hence it is not necessary to assume dim(M0)+ = dim(M0)~. 

Detailed proofs will appear elsewhere. 
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