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This announcement outlines a reformulation of W. Gustin's combi
natorial theory of current graphs [3] and J. W. T. Youngs' extension of 
that theory to vortex graphs [8] into the topological context of covering 
spaces and branched covering spaces. Whereas certain restrictions 
imposed by Gustin and Youngs were convenient in obtaining minimal 
imbeddings of complete graphs, leading to the solution of the Heawood 
map-coloring problem (see Ringel and Youngs [6]), the present relaxation 
of those restrictions leads to a more general method of constructing 
minimal and other imbeddings of graphs. 

1. Current graphs. A rotation system on a graph K is a map cp that 
assigns to each vertex v a cyclic permutation (pv, called the rotation at t>, of 
the set of all vertices adjacent to v. The pair (K, cp) is called a rotation graph. 

A rotation system acts as a permutation on the set of oriented edges of 
its graph. The orbits under the cyclic group generated by this permutation 
are called rotation circuits. If each rotation circuit is regarded as the 
boundary of a polygon, then the graph is imbedded in an oriented surface 
so that the rotation at each vertex corresponds to the surface orientation. 

The present authors call this imbedding the schematic imbedding, 
reflecting RingePs terminology ("scheme") for his way (see [5]) of describ
ing a rotation system in his pioneering attack on the Heawood map-
coloring problem. The underlying concept appears to be an invention of 
L. Heffter [4]. J. Edmonds has observed that it leads to an algorithm for 
computing the genus of any graph. The schematic imbedding and the 
Edmonds algorithm are described in detail by Youngs [7]. The algorithm 
is prohibitively time-consuming, even on a very fast computer, and it has 
firmly resisted all attempts at acceleration. It would be interesting to 
know whether any essential speed-up is possible. 

A current assignment in a group G for a rotation graph (K9 cp) is a map 
a from the set of oriented edges of K to the group G such that the following 
rules hold. 
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CI. The current a([w, v~\) on an oriented edge is the inverse of the 
current a([t>, u]) on that same edge with the opposite orientation. 

C2. The identity is not the current on any oriented edge whose opposite 
lies in the same rotation circuit. 

C3. If a rotation circuit c has two distinct oriented edges [ul9 vx~\ and 
[w2> V2] whose opposites lie in a single rotation circuit d (possibly d = c), 
then the currents on [ul91^] and [w2, v2~] a r e different. 

The triple (K, cp, a) is called a current graph. 
In Gustin's current graphs, each nontrivial current appears once on 

each rotation circuit, restricting the circuit length to | G\ — 1. Furthermore, 
the currents on the complete set of oriented edges in which a rotation 
circuit c meets another circuit d must constitute a coset of some subgroup 
of G whose index is the number of circuits. Morever each vertex must 
satisfy the Kirchoff current law (abbr. KCL). 

KCL. The product of the inflowing currents at a vertex v9 taken in the 
order consistent with the rotation at v9 equals the identity of G. 

Youngs relaxed KCL at certain vertices, enabling him to produce 
triangular imbeddings of graphs that are a few edges shy of completeness. 
Topological methods initiated by Ringel made it possible to build these 
triangulations up into minimal imbeddings of complete graphs. 

2. Covering the dual. The vertex set of the derived notation graph 
(Ka, <pa) is the Cartesian product C x G of the set C of rotation circuits of 
(K, cp) and the group G. There is an edge between the vertices (c, g) and 
(rf, h) if there is an oriented edge in the circuit c carrying current hg'1 such 
that the same edge with opposite orientation lies in circuit d (possibly 
c = d). 

If the order of currents (unique up to cyclic permutation) on circuit c is 
al9. . . , an and the opposites of the oriented edges carrying those currents 
lie in circuits cl9 . . . , cw, respectively, then the rotation at vertex (c, g) of 
(Xa, (pa) is the cyclic permutation 

((c^^flf), . . . , (c„, ang)). 

One now observes that the effect of rule CI for current assignments is 
to assure that adjacency of vertices is a symmetric relation in (Ka9 <pa). 
The effect of rules C2 and C3 is to prohibit self-adjacency (loops) and 
multiple adjacency, respectively. 

THEOREM 1. Let (X, cp, a) be a current graph with a (global) KCL 
current assignment in a group G. Then the schematic imbedding of the 
rotation graph (Ka9 cpa) is a covering space over the dual of the schematic 
imbedding of(K, cp). 
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A product of inflowing currents (in rotation order) at a vertex v which is 
not equal to the group identity is called an excess current at v. If the group 
is not abelian, then the various excesses at a vertex are conjugate group 
elements. Hence, the order of the excess at a vertex is a well-defined 
concept. 

THEOREM 2. Let (K,(p,<x) be a current graph (with currents in a group G) 
whose excess currents occur at vertices vl9. . . , vk and have orders nu . . . ,nk 

respectively. Then the schematic imbedding of (Ka, (pa) is a branched 
covering over the dual of the schematic imbedding of(K, cp). For i = 1 , . . . , k 
there are\G\/nt branchpoints lying over the image of vt in the face which is its 
dual and the degree of branching at each is nt. 

Proofs of Theorems 1 and 2 will appear in a subsequent paper of the 
authors [2]. 

It is possibly worth noticing that the dual of a current graph is 
appropriately called a voltage graph and that the dual of the Kirchoff 
current law is the Kirchoff voltage law. The reason for using a current 
graph rather than a voltage graph is the ease it permits in the construction 
of triangulations. 

For a development of the theory of branched covering spaces, the 
reader is referred to R. H. Fox [1]. 

3. Applications. Theorems 1 and 2 are applied by supposing that a 
desired imbedding might be a component (the coverings constructed here 
need not be connected) of a covering of the dual of some current graph. 
Necessary properties of the current graph are derived and an effort is 
made to construct it. This method is now illustrated for two elementary 
examples. 

EXAMPLE 1. Let J be a graph with 12s -h 8 vertices, each of degree 
12s + 6, so that its (edge) complement (in the complete graph Kl2s+8) is 
the union of 6s + 4 disjoint edges. Then the graph / h a s (6s + 3)(12s + 8) 
edges. It will be shown that J has a triangular imbedding (i.e., one such 
that each face is a triangle). 

A triangular imbedding for J would have (4s + 2)(12s + 8) faces. 
Thus, it might be a (12s + 8)-fold cover of an imbedding whose dual would 
have 4s + 2 vertices, 6s + 3 edges, and 1 rotation circuit. Conversely, 
Theorem 1 implies that the existence of a current graph with 4s + 2 
vertices, 6s + 3 edges, 1 rotation circuit and a KCL current assignment in 
Z 1 2 s + 8 would yield a triangular imbedding for J. Such a current graph is 
obtained by reinterpreting the currents on Figure 4 of Youngs [9, p. 223] 
as elements of the cyclic group Z 1 2 s +8-

EXAMPLE 2. Let H be a graph with 12s + 9 vertices, each of degree 
12s + 6, such that its complement is a single loop traversing every vertex. 
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The graph H has a triangular imbedding, which covers the dual of the 
very same current graph as in Example 1, except that the currents are 
taken to be elements of the cyclic group Zl2s+9. 

In general, any rotation graph with an infinite cyclic KCL current 
assignment leads to the construction of infinitely many imbeddings, 
corresponding to various possible choices of modulus, as illustrated by 
Examples 1 and 2. 

4. Singular arcs. The Youngs exposition [8] of the general theory 
replaces each self-adjacency in a current graph by a "singular arc" with 
only one endpoint. Such an arc carries a current of order 2. The present 
tactic is to desingularize such an arc by restoring its missing endpoint, 
thereby causing its current to appear twice on some rotation circuit, 
overriding rule C3. 

By Theorem 2, the restored endpoint generates \G\/2 branch points, 
each of order 2, and each lying in the interior of a face whose boundary 
consists of two edges. The desired imbedding is obtained by deleting each 
such face and pasting its two boundary edges together to reclose the 
surface. 
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