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Introduction. Consider the region ^ *= {(x, y9 z)e R3 \x2 + y2 ^ / 2(z) , 
0 ^ z g L) obtained by rotating the curve f(z), 0 ^ x ^ L, about the 
z-axis. Denote by q(t, r, r') the fundamental solution of the heat equation 
in ^ with zero boundary value on d99 and let p(t9 r, V) = (l/(2ftf)3/2) * 
exp(-|r - r'\2/2t). Express everything in terms of cylindrical coordinates 
(p, 0, z). The purpose of this note is to show that, for each m ^ 0, 

çL çf{z) Qlm 

J dz J p dp S O 2 * * k ( p ' ° ' z ) ' ( p > e>Z^ 
çL /*/(z) film 
J dzj pdpâQÏiïPit'iP'0'2)'^^*)) 

e=H _^ i 

0=0 

as t ^ 0. As Kac points out in [2], this equation enables one to recapture 
the distribution of the function ƒ (z) from the eigenvalues of the Laplacian, 
with zero boundary conditions, in CS. Hence, one gets a refined version 
of Weyl's theorem (cf. Kac [1]) by taking advantage of the cylindrical 
symmetry of CS. Indeed, Weyl's theorem results from (1) with m = 0. As 
will be seen, (1) can be viewed as an extended "principle of not feeling the 
boundary." 

The "principle of not feeling the boundary" is the statement that 
q(t, r, f)/p{t, r, f) -» 1 as t >* 0 for f e (§. Combining this with the maxi
mum principle, which tells us that q(t, f9 f) <£ p(r, r, ?), one can easily 
derive 

q(t,f,f)df/ p(t,r,r)dr~+ 1. 

The derivation of (1) can be accomplished in the same way, only there is 
now an extra complication. The maximum principle can no longer be 
invoked to compare the 0-derivatives of q and p. For this reason we 
introduce a special representation of q and p. From this representation it 
will be possible to conclude that 
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(2) 
film 

^4(t,(p,O,z),(p,0,z)) 
d2m 

^p(r,(p,O,z),(p,0,z)) 
0=0 

for all p and z. It will then be easy to get (1). 

Basic representation. Let Q = C([0, oo), (0, oo) x JR) and denote by 
p(r, o) and z(t, œ) the first and second coordinates, respectively, of the 
path co at time t. Set Mt = @[(p(s),z(s)):s sg r] and ^ = ^((Jf^o^)-
For each (p, z)e(0, oo) x R there is a unique probability measure PPtZ 

on <Q, ê f > such that pt(t) = p(t) - p - ƒ'0 (l/p(s)) ds and j32W = *(0 - z 

are independent Ppz-Brownian motions (i.e., PPtZ(Pi(0) = 0) *= 1 and 
PPAPi(t + s) eT\J t j = J>g(f,y - &(s))dy, i = 1,2, where g(r,y) -
(27U)~1/2exp(-);2/20). H. P. McKean [3] is a good reference for such 
matters. 

Next define 

© M ) = 7^7w2 £ exp(-(0 + 27tn)2/2r). 

Then 0(r, 0 - 0') is the transition probability density for Brownian 
motion on S'. Let R(t) = f0 (l/p2(s)) ds. 

Using Ito's formula and Doob's stopping time theorem, one can easily 
derive 

(3) p(t, (p, 0, z), (p', 0', z')) = Ep,z [©(K(r), 0 - 00, p(t) = p', z(t) - z'] 

and 

(4) q(t, (p, 0, z), (p', 0', z')) = E,,,[©(*(t), 0 - ff)9 p(t) = p', z(t) = z', t > t], 

where x =* inf{f ;> 0:p(r) ^ /(z(t))}. The expressions on the right-hand 
sides of (3) and (4) are meant to denote the densities of the corresponding 
quantities with respect to p' d p' dz. 

Note that 

d2m® 
QQlfn (t,6) 

= (-l)m I ( - l )k" 'tn,k 
(2lt + 2m+l ) /2 

* = 0 l 

where Cm,0 = (2m)!/2mm!(27t)1/2.Thus 

d2m 

£ (0 + 27m)2* exp(-(0 + 27tn)2/2t). 

(5) 
3d 2m Pit, o», o, z), o», M ) = ( - i)m E ( - i)*cm,fc E Pm,n,k(p, e, z) 

fc = 0 

where pw,M,k(p, z) is given by 
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EP,Z ^ î m ^ i ) / 2 e x P ( ^ ( g + 2nn)2/2R(t)lp(t) = p,z(t) = z\ 

and 

a2w m oo 

<*> ASS^<*°>z>'o» M ) = H r i ( - tf c,.» E qm,„,k(p, Ö,z) 
fc = 0 n = - o o 

502" 

where gm>ll,k(p, 0, z) is given by 

£P,* fl(tyîM+r+i)/2exP(-(0 + 27tn)2/2iî(0),p(t) = p,z(0 = z,t > t \. 

The densities indicated on the right of (5) and (6) not only exist but are 
bounded, and the series are absolutely convergent. In fact, by Jensen's 
inequality, 

\Ep,z[R(t)-"h(p(t),z(t))]\ 

S * - ' - % , , [ £ p2%s)ds\h(p(t),z(t))\] 

= r"-1 f dsEp<z[p
2*(s)EmMs)[\h(p(t ~ s\4t - s))|]] 

Jo 

= t - a - 1 r ds r(P')2*+ip(s,p,p')dp' 
Jo Jo 

• r p" dp" r dz' p{t - s, p', p")q{t, z - z')\h(p", z')l 
Jo J-oo 

where 
1 C2n 

p(s, p , p') = 2 ^ J exp( - (p2 4- (p')2 - 2pp' cos 0)/2s) d0 

and 

g(f,z) = (27c0- 1 / 2 exp(^z 2 / 20 . 

Elementary estimation now yields 

\EPtZ[(R(tT«h(p(t\z(t))]\ 

S AJLt, p) f" p' dp' f°° dz' p(t, p, p')gfc z - z')Up\ Z')\ 
JO J- oo 

where Aa(t, p) can be chosen to depend continuously on (t, p)e(0, oo) 
x (0, oo). This shows that 
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(7) EPtX[R(t)-\ p(t) = p , z(t) = z] ^ AJt, p)p(t, p , p)g(t, 0). 

It is obvious from (7) that 

(8) EPfZ[{R{t))-\ p(t) = p , z(r) = z,z>t]^ AJLt, p)p{U p , p)g{U0). 

W e can n o w write 

(9) 

and 

d2m 

^p(t,(p,O,z),(p,0,z)) 
1 = 0 

= (-irCm,0Ep,z[R(t)-(2m+1)l2,p(t) = p,z(t) = z] + Am(t,p,z) 

(10) 

5 2 m 

^2ï«(t,0»,o,z),(p,e,z))i 
9 = 0 

= (-\rCm,0Ep,z[R(t)-{2m+1),2,p(t) = p,z(0 = z,% > t] + A^,p,z), 

where 

and 

Since 

Am(t,p,z) = 2 ( - l f Z (-l)kCm,k X pw,M,k(p,0,z) 
fc=0 « = 1 

A^,p,z) = 2 ( - l f £ (-l)fcCm>t 2 «„,„>, 0,z). 
fc = 0 n = l 

(27C)2fc 1 
s u g 5(2m+ ik+D/2 exP( ~ (2rc„)2/2s) ^ Bm ,*^+T' 

one sees that for m 2; 1 the series defining Am and Â , are absolutely 
convergent, and |Am(t, p, z)\ v |A^(t, p, z)\ g CJt. 

In particular, if m *t 1, then 

a 2 m 

de2 -q(t,(p,O,z),(p,0,z)) 

g Cm,o£p>2|R(tr<2M+1)/2,Mt) = p,z(t) = z,x>t\ + \A'm(t,P,z)\ 

Ô2m 

p(t, {p, 0, z), (p, 0, z)) 

l 2 m P(t , (p ,O,z) , (p ,0 ,z)) | 

a0 2 r a 

a 2 m 

- Am(t, p, z) + |A;((,p,z)| 

dd 

This is the estimate given in (2). 

1 = 01 
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(11) 

Derivation of (1). We now want to show that 

(Ô2"»/ôfl2"0«(r,(p,0,zX(p,e,2))la.o lim- = 1 
r:ö (e2m/de2m)p(t, (P, o, z), (p, 0, *))|,.o 

for 0 < z < L and 0 < p < ƒ (z). In order to do this, let PPt$fZ be the 
measure induced on C([0, oo), (0, oo) x S' x R) by the process (p(t), 
0(K(O), z(r)), where (p(r), z(r)) is governed by PPtZ and 0(t) is an independent 
Brownian motion of S' starting at 0. Let x = inf{t ^ 0:p(t) ^ /(z(0)}. 
Then an application to the strong Markov property yields 

q(r,(p,O,z),(p,0,z)) 

( 1 2 ) =p(r, (p, 0, z), (p, 0, z)) - £, i0,,[z.sif<' - t, (p(x), 0(t), z(x)), (p, 0, z))]. 

Noting that {d2m/d02m) p(t - x, (p(x), 0(x), z(x)), (p,0,z))|0==o contains a 
factor of the form 

exp(-(p2(x) + p 2 - 2p(x)pcos0(x))/2(t - x)) ^ exp(~52/20, 

where Ö is the distance from (p, 0, z) to the boundary of ^ , one can easily 
see that (11) holds. One might suspect that (12) can also be used to derive 
(2). However, it is not clear how to get an estimate which is uniform as 
(p, 0, z) tends to the boundary. 

To complete the proof of (1), let 

P2m 
qm(t, p, z) = ~^q(t, (P, 0, z), (p, 0, z))| 

e=o 
and 

a2m 
pm{t, p , Z) = -^P(t, (P, 0 , Z), ( p , 0 , Z))| 

0 = 0 fc=l 

and set UE{t) = {(p, z ) : 0 < z < L , 0 < p < ƒ (z), and \qjpm - 1| £ e}. We 
have just seen that \Ue{t)\ -• 0 as t -* 0. Using (2), one has 

pàp 
1 -

ÇL çf(z) 
dz qm 

Jo Jo 
ÇL çf{z) 

dz pmp dp 
Jo Jo 

dz\ \pn 
Jo Jo 

\pdp 

+ 2 

dz\ pmp dp 
KO Jo 

J
fL çf(z) 

I dz \pm\XuÉ(t)P dp 
o Jo 

WM 

I /»L /*/(z) 

dz pmp dp 
Jo Jo 

dz\ pmp dp 
I Jo Jo 
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Multiplying and dividing each of these terms by tm+3/2 and using the 
dominated convergence theorem, one sees that they all tend to zero as 
t and then e go to zero. 
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