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Let E be a Banach space. We consider systems of the form 

(L) L [ y ] s y + ^ = /, (F) F[y] = c 

where y e <^(1)([a, b], E\ fe<£{[a, b], £), A e V([a, b\ L(£)), F e L[<#([a9 b\ 
E), E] and ceE. When the system has one and only one solution, for any 
fe^([a9b],E) and ceE, we show that it has a Green function, that is, 
a function G:[a,b] x [a,b]-+L(E,E") such that ye<#(1)([a,blE) is 
the solution of L[y] = ƒ and F[y] = 0 if and only if y(t) = ƒ* G(t, s)f(s) ds. 
We exhibit the relations between G, A and F. (F) is called a lateral condition ; 
initial conditions and boundary conditions are particular instances of 
lateral conditions. The construction of G uses a Riemann-Stieltjes integral 
representation for F, given in §1. 

1. Analytic preliminaries. We consider always vector spaces over the 
complex field C, but all results are valid for real vector spaces. 

1. Given an interval [a, b] of the real line, a division of [a, b] is a finite 
sequence d:t0 = a < tx < • • • < tn = b. We write \d\ = n and Ad = 
sup{|^ — ti-.l\\i= 1,2,..., \d\}; D denotes the set of all divisions of 
fab]. 

2. Let X, 7be Banach spaces; given a:[a,ft] -+ L(X, Y) and deD we 
define 

SJ^[a] = sup c.eZJWI^l j 

and S7[a] = sup{SVd[a]\de D}. 
We say that a is of bounded semivariation, and we write 

aGSK([a,H^(*,r)), 

if SV[oi] < oo (see for instance [D] and [B-K]). 

PROPOSITION 1. Gwen aeSK([a,b],L(X, 7)) and /e*([a,b],X), there 
exists Fa[ ƒ ] = J» <fe(t) • ƒ (t) = limAd_0 £ff, [afo) - a(t,_ J] • ƒ (ft e S w/iere 
^ [ ^ i . Ü , i = l , 2 , . . . , | 4 Wfe feat* ||Fa[/]|| ^ SV[a]\\f\\ and hence 
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FaeL[n[a,b],X), Y] with \\FJ S SV[«\. 

EXAMPLE 1. If Y = C then SV{[a,b],L(X,Q) = BV([a,b],X') where 
BV([a, b], X') is the space of functions a: [a, b] -* X' that are of bounded 
variation, that is, such that V[<x] = sup{Vd[a]\d e D} < oo where 

W 

= sup 
\d\ 

I <XiXtd- a^ - i ) ) XiEX^WXiWS 1 

By BV0([a,b\,X') we denote the space of all functions <xe BV([a,b],X') 
such that <x(a) = 0 and a(t + ) = a(t) for t G ]a, b[. Endowed with the norm 
V[oc], BV0([a, b], X') is a Banach space. We write 

BV0([a,b]) = BV0([a,b],C). 

In the usual way one proves the following 

THEOREM 2 (RIESZ). <g([a,b],X)' £ # 0 ( [ a , b],X'); i.e., the mapping 
oceBV0([a, b]9 X') r-+FaG^([a, b], X)' is a linear isometry (i.e., ||FJ = 
V[oi\) of the first Banach space onto the second. 

EXAMPLE 2. If X = C we have SV([a,b],L(C, Y)) = BW([a,b], Y), 
where BW([a,b], Y) is the space of functions a:[a,b] -* Y that are of 
weak bounded variation, that is, W[oi] — sup{W^[a]|deD} < oo where 

Wd[ot] = sup 
Ml 
£ W i ) - 4 - i ) ] ^ e C J A ^ 1 

DEFINITION. Let Z be a Banach space; 

BW0([a, b], Z') = {a G BW([a, b], Z')\z o a e £>0([a, b]) for every z G Z}. 

Endowed with the norm W([a], BÏF0([a, ft], Z') is a Banach space. 

THEOREM 3. L[<#([a, b]), Zf] ^ W 0 

a G W0([tf, &], ZO ^ f « e I W I > , &]), Z'] 

is a linear isometry (that is ||FJ = W[a]) o/ t/ze first Banach space onto 
the second (for </> G * ([a, b]) we define Fa[0] = J« (/>(0 da(0). 

3. Let X and Z be Banach spaces and a:[a, 6] -> L(X, Z'\ Given 
x e l and Z G Z we define a(x) : [a, b] -> Z' and (z©a)(x):[a, b]-> C by 
<z, a(x)(t)> = <z, a(t)x> and (zocc)(x)(t) = <z, a(t)x>. 

We have 

BV([a, b], L(X, Z')) c S7([a, 6], L(X, Z')) <= BW([a, b], L(X, Z')) 
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and we define 

SK0([a,ft],L(X,Z')) 

= {a G SV([a9 ft], L(X9 Zf))\(z o a)(x) e BV0([a, ft]) for all x e X and z e Z}. 

Endowed with the norm SV[a]9 SV0([a9 ft], L(X9 Z')) is a Banach space. 
The following theorem is an extension of Riesz' representation theorems 

(Theorems 2 and 3) : 

THEOREM 4. Let X and Z be Banach spaces. The mapping 

aGSV0([a9ft],L(X9Z')) »FaeL[^([a9ft],X),Z'} 

is a linear isometry (i.e. \\FJ\ = SV[oi\) from the first Banach space onto 
the second (see for instance [B-K? Satz 11]). 

COROLLARY. Let X and Y be Banach spaces. For every 

FeL[«([fl,fe],X),r] 

there is one and only one aeSV0([a9b]9L(X9 Y")) such that F = Fa; we 
write aF = a. 

4. In what follows we extend the preceding results to locally convex 
topological vector spaces (LCTVS). We do not use these extended results 
in this paper. 

Let X and Y be LCTVS; we denote by P and Q the set of all continuous 
seminorms defined on X and Y, respectively. Given a:[a, b] -> L(X9 Y)9 

peP9 qeQ and dGD, we define 

SVq,p;dW = SUP ^ Xt G X9 p(Xi) ^ 1 

and SVq>p[a] = s\xp{SVqfP;d[a]\de D}. We write aeS7fl>p([a,ft],L(X, Y)) 
if SVq>p[<x] < oo. We say that a is of bounded semivariation9 and we write 
a G SK([a, ft], L(X, Y)), if for every qeQ there is a p G P such that SVq p[a] < 
oo; that is SF([a,ft],L(X, Y)) = [)qeQ[\JpePSVqtP([a9b]9L(X9Y))l 

PROPOSITION 1'. Let X and Y be LCTVS, Y sequentially complete. 
Given <xeSV([a9b]9L(X9 Y)) and fe^([a9b\Y) there exists F a[/] = 
ft da(t) • ƒ (0 = l i m ^ o Z!'J i W O - ocfo- i)] - ƒ ( « G Y9 where & e [tt.uQ. 
We have Fa G L[<$([a9 b]9 X\ Y]. 

If Y = C we get SHfe H £ ( * , C)) = BK([a, b]9 X') where BK([a, 6], X') 
is the space of functions a : [a, ft] -» X' that are of bounded variation, i.e., 
£K([a,ft],X') = {JpePBVp([a9b]9X

fy9 BVp([a9b]9X') denotes the space of 
functions a: [a, ft] -» X' such that Fp[a] < oo, where 
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Vp[*] = sup{Vpid[a]\deD} 

and 

K,dW = S UP 

\d\ 

Z <*i>aW - a(^-i)> xt e X, p(xt) S 1 

By BV0([a,b],X')^wQ denote the space of all functions ae BV([a,b],X') 
such that xooce BV0([a, b]) for all xeX. 

Using the classical Riesz theorem (Theorem 2) we prove 

THEOREM 2'. <g([a, ft], X)' £ BV0([a, ft], X'); i.e., the mapping 

a e BV0([a, ft], X') »Fae <${[a, ft], X)' 

is an isomorphism of the first vector space onto the second. 

Let X and Z be LCTVS, Z bornological; by Z£ we denote its topological 
dual endowed with the strong topology. We define SV0([a, ft], L(X, Zj,)) = 
{a G SV{[a, ft], L(X, Z£))\z o a G BV0([a, ft], X') for all z G Z}. 

Using Theorem 2' we prove 

THEOREM 4'. Let X and Z be LCTVS, Z bornological. The mapping 

a G SV0([a, ft], L(X, %)) »Fae L\f€(\a, ft], X), Z@ 

is an isomorphism of the first vector space onto the second. 

Endowing the spaces above with their natural structure of LCTVS the 
algebraic isomorphisms in Theorems 2' and 4' become homeomorphisms. 

2. The Green function. 1. Given the differential operator L defined in 
the introduction we denote by Rs its resolvent, i.e., for every s e [a, ft], Rs 

is the solution Re<£(1)([a,blL(E)) of dR/dt + A oR = 0 such that 
R(s) = IE (identical automorphism of E). We write R(t, s) = Rs(t), where 
t G [a, ft]. 

THEOREM 5. The solution of L[y] = f y (s) = c is given by y(t) = 
R(t, s)c + $ R(t, a) f{a) da. (See, for instance, [B] or [C].) 

2. Given F e L[%?([a, ft], E), E] and s G [a, ft], for every x G £ we define 
F[Rs]x = F[Kpc], hence F[Rs]eL(E). It is easy to show that F[RS] = 
\b

a doi(t) o R(t, s), where a = aF. We write Js = J(s) = F[JRJ = Ft[R(t, s)]. 
The following theorem is easy to prove : 

THEOREM 6. The following properties are equivalent : 
(1) For every ƒ e #([a, ft], E) and ce£ , the system L[y] = ƒ, F[y] = c 

/ias one and only one solution y e #(1)([a, ft], E). 
(2) For every ce E the system L[y] = 0, F[y] = c has one and only one 

solutionye^{l){[a,b],E). 
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(3) The mapping ye {we^(1)([a,b],E)\L[u] = 0} \-+F[y]eE is an iso
morphism of the first space onto the second. 

(4) For every s e [a, b] we have Js = F[RS] e Aut(£). 
(5) There is an se [a, b] such that Jse Aut(£). 

From now on we suppose that the equivalent properties of Theorem 6 
are verified. 

It is immediate that 
(1) For every t,se [a, b] we have R(t, s) — J(t)~ * o J(s). 
(2) F,[J(t)-1] = /Jî. 
(3) dJ(t)~lldt = A(t) oJ(t) -1 = 0. 
Using (3) one can prove that 
(4) For every ƒ e #([a, b], E) there exist the following integrals and we 

have 

jbM*)<>m-1ljtj(sMs)ds~\ 

J a ]_" s 

b 

d<x{x)oJ(%yl J(s)f(s)ds. 

THEOREM 7. If the properties of Theorem 6 are verified then 

ye^\[a,blE) 

is the solution of the system L[y] = f F[y] = c if and only if 

(G) 

where 

G(t,s) = 

y(f) = 

-J(t)-lo\ 

_ 1c+ (* G(t, 
J a 

s)f(s) ds 

f daF(t)o J(î)"1 - Y(s - t)IE |o J(s> 

J(t) 1 e L{E") being the bitranspose of J(t) x e L{E) and Y the Heaveside 
function. We have 

(i) G(t,s)eL(£,£"); 
(ii) G(s +, s) — G(s — ,s) = IE for every s e ]a, b[ ; 
(iii) G{U b) = 0; G(a, a) = -IE and G(t, a) = 0 for a < t ^ b; 
(iv) for every fixed s e [a, b]9 G is a continuous function of t, for t =/= s; 
(v) for every fixed t e [a, b] and every xeE, the function s e ]a, b[ h* 

G(r, s) • xe E"a{E„iEI) is continuous on the right; 
(vi) the function G with these properties is unique. 

SKETCH OF THE PROOF. If y e ^(1)([a, b]9 E) is the solution of the system 
L[y] = f F[y] = c by Theorem 5 and (1) we have 
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y(x) = R(x,t)y(t) + jX R(x,s)f(s)ds 

= J(t)-lJ(t)y{t) + J ( t ) - 1 [ f J(s)f(s)ds - f J(s)f(s)ds 

Applying F and using (2), the corollary of Theorem 4 and (4), one proves 
that 

c = J(t)y(t) - Ç nSdot(z)oJ(z)-i\j(s)f(s)ds + J* J{s)f{s)ds9 

from which (G) follows easily. Properties (i) to (v) follow from the expression 
for G and the proof of (vi) uses Theorem 8 below. 

3. Extensions of Theorem 7. Theorem 7 may be adapted to the case in 
which the system L[y] = ƒ, F[y] = 0 has one and only one solution for 
every feV([a9b],E). In this case J~X\E0 = F[#(1)([a, b],E)] -» E is con
tinuous if and only if E0 is a closed subspace of E. 

THEOREM 8. The system L[y] = f F[y] = c where / e l ^ f l / i , b], JE) has 
one and only one solution y e L^\[a9 b]9 E)9 given by (G) {but now the integral 
is defined by continuous extension of (G) from ^{[a9 b]9 E) to L±{[a9 b]9 E)). 

THEOREM 9. If the system L[y] = f F [y] = c9 has one and only one 
solution y e ^(1)([a, b], E) for every ƒ e #([a, b]9 E) and ce E9 where 
FeL[^ (1 )([a,fc], E)9 E\ then we can reduce it to a system L[y] = f F [y] = c 
that has also one and only one solution, where F e L[^{[a9 b]9 E)9 £]. F and 
c are given by 

F[y] = Ft y{c a) — A{s)y{s)ds and c = c — FA f(s)ds 

The preceding results may be extended to systems of the form 

L[y] = A0(Aiy)' + By = f, F[y] = c 

where A09 Al9Be ^{[a9 b]9 L{E)) and A09 Ax are invertible at every point 
t e [a9 b\ In this case y e DL = {u e %{[a9 b]9 E)\Axu e <#{1){[a9 b]9 £)} ; DL is 
endowed with the norm ||w||(L) = sup[||w||, 11(^^)11] and FeL[DL9E]. 

ADDED IN PROOF. The results of this paper may also be extended to 
half-ópen and open intervals, to the case where A e L\oc Qa9 b[9 L{E)) and 
F takes values in a Banach space different from E. The proofs will appear 
in [H]. 
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