APPELL POLYNOMIALS WHOSE GENERATING FUNCTION IS MEROMORPHIC ON ITS CIRCLE OF CONVERGENCE

BY J. D. BUCKHOLTZ
Communicated by W. T. Martin, October 19, 1972

Let $\Phi(z)=\sum_{0}^{\infty} \beta_{j} z^{j}$ have radius of convergence $r(0<r<\infty)$ and no singularities other than poles on the circle $|z|=r$. The Appell polynomials generated by Φ are given by

$$
\pi_{k}(z)=\sum_{j=0}^{k} \beta_{k-j} z^{j} / j!, \quad k=0,1,2, \cdots
$$

An entire function g is said to possess a $\left\{\pi_{k}\right\}$ expansion if there is a complex sequence $\left\{h_{k}\right\}_{0}^{\infty}$ such that

$$
\begin{equation*}
\sum_{k=0}^{\infty} h_{k} \pi_{k}(z) \tag{1}
\end{equation*}
$$

converges uniformly on compact sets to $g(z)$. In this note we show that the family of functions which have $\left\{\pi_{k}\right\}$ expansions is completely determined by the poles of Φ on $|z|=r$ together with the zeros of Φ in the closed disk $|z| \leqq r$.

Set $\Phi(z)=T(z) \phi_{1}(z) / P(z)$, where ϕ_{1} is analytic and zero-free in $|z| \leqq r$ and T and P are polynomials whose zeros correspond respectively to the zeros of Φ in $|z| \leqq r$ and the poles of Φ on $|z|=r$. Let

$$
P(z)=\prod_{q=1}^{\lambda}\left(1-\alpha_{q} z\right)^{m(q)}
$$

where $m(q)$ denotes the multiplicity of the pole α_{q}^{-1} of Φ, and let $m=\max m(q), 1 \leqq q \leqq \lambda$. It is relatively easy to characterize those complex sequences $\left\{h_{k}\right\}_{0}^{\infty}$ for which (1) converges. The following result was proved in [2], and can also be obtained as a special case of a theorem of W. T. Martin [3].

Theorem A. If $\left\{h_{k}\right\}_{0}^{\infty}$ is a complex sequence, then the following are equivalent:
(i) each of the series

$$
\sum_{k=0}^{\infty}\binom{k+m(q)-1}{m(q)-1} h_{k} \alpha_{q}^{k}, \quad 1 \leqq q \leqq \lambda
$$

converges;

[^0](ii) the series (1) converges for all z in some infinite bounded set;
(iii) the series (1) converges for all z, the convergence being uniform on every compact set.

The problem of determining which entire functions g possess $\left\{\pi_{k}\right\}$ expansions is considerably more intricate, and the solution of this problem is our main result. Let

$$
Q(z)=\prod_{q=1}^{\lambda}\left\{1-\alpha_{q} z\right\}^{\min \{m(q), m-1\}}
$$

let D denote the derivative operator, and let \mathscr{F} denote the space of entire functions f such that

$$
\lim _{n \rightarrow \infty} r^{-n}\left(D^{n} f\right)(0)=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} n^{m-1} r^{-n}\left(Q(D) D^{n} f\right)(0)=0
$$

If $m=1$ (Φ has only simple poles on $|z|=r$), the second condition reduces to the first, and \mathscr{F} is the collection of all f such that $f^{(n)}(0)=o\left(r^{n}\right), n \rightarrow \infty$. In general, $f^{(n)}(0)=o\left(r^{n}\right)$ is a necessary condition that f belong to \mathscr{F}, and the condition

$$
f^{(n)}(0)=o\left(r^{n} / n^{m-1}\right), \quad n \rightarrow \infty
$$

is sufficient. For each $k \geqq 0$, let L_{k} denote the linear functional given by

$$
L_{k}(f)=\sum_{j=k}^{\infty} a_{j-k} f^{(j)}(0)
$$

where $\sum a_{j} z^{j}$ is the power series for $T(z) / \Phi(z)$. It was shown in [2] that, if Φ is zero-free in $|z| \leqq r$, then g possesses a $\left\{\pi_{k}\right\}$ expansion if and only if g belongs to \mathscr{F}. The expansion in this case is unique, the coefficient sequence $\left\{h_{k}\right\}_{0}^{\infty}$ being given by $\left\{L_{k}(g)\right\}_{0}^{\infty}$ (provided one takes $T(z) \equiv 1$). There is an easy and beautiful extension of this result to the general case.

Theorem B. A necessary and sufficient condition that an entire function g possess $a\left\{\pi_{k}\right\}$ expansion is that the differential equation $T(D) f=g$ have a solution f which belongs to \mathscr{F}. If

$$
g(z)=\sum_{k=0}^{\infty} h_{k} \pi_{k}(z)
$$

for all z, then there is an $f \in \mathscr{F}$ such that $T(D) f=g$ and $h_{k}=L_{k}(f)$, $k=0,1,2 \ldots$. Conversely, if $f \in \mathscr{F}$ and $g=T(D) f$, then

$$
\begin{equation*}
g(z)=\sum_{k=0}^{\infty} L_{k}(f) \pi_{k}(z) \tag{2}
\end{equation*}
$$

for all z, the convergence being uniform on every compact set.

Proof. Let $\left\{p_{k}\right\}_{0}^{\infty}$ denote the Appell polynomial sequence generated by $\phi(z)=\Phi(z) / T(z)$; since ϕ is zero-free in $|z| \leqq r$, all the results obtained in [2] apply. Suppose that

$$
\begin{equation*}
g(z)=\sum_{k=0}^{\infty} h_{k} \pi_{k}(z) \tag{3}
\end{equation*}
$$

for all z and set

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} h_{k} p_{k}(z) \tag{4}
\end{equation*}
$$

It follows from Theorem A that the convergence of (3) is equivalent to that of (4), and is uniform on compact sets in both cases. Verify that $\pi_{k}=T(D) p_{k}$ and apply the operator $T(D)$ to both sides of (4). This yields

$$
(T(D) f)(z)=\sum_{k=0}^{\infty} h_{k} \pi_{k}(z)=g(z)
$$

From (4) and the remark preceding Theorem \mathbf{B}, it follows that $f \in \mathscr{F}$ and that $h_{k}=L_{k}(f), k=0,1,2, \cdots$.

Suppose now that $f \in \mathscr{F}$ and $g=T(D) f$. From the remark preceding Theorem B, we have

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} L_{k}(f) p_{k}(z) \tag{5}
\end{equation*}
$$

Applying $T(D)$ to both sides of (5), we obtain (2), and this completes the proof.

Unless Φ is zero-free in $|z|<r$, the $\left\{\pi_{k}\right\}$ expansions are not unique. Let \mathscr{H} denote the space of all sequences $\left\{h_{k}\right\}_{0}^{\infty}$ such that

$$
\sum_{k=0}^{\infty} h_{k} \pi_{k}(z)=0
$$

for all z (equivalently, for all z in some infinite bounded set). Set $T(z)=T_{0}(z) T_{1}(z)$, where T_{0} is a polynomial with no zero outside the disk $|z|<r$ and T_{1} is a polynomial with no zero off the circle $|z|=r$. Let \mathscr{H}_{0} denote the space of all sequences $\left\{h_{k}\right\}_{0}^{\infty}$ such that

$$
u(z)=\sum_{k=0}^{\infty} h_{k} z^{k} / k!
$$

satisfies the differential equation $T_{0}(D) u=0$. It is known (and easy to prove) $\left[\mathbf{1}\right.$, p. 25] that $\mathscr{H}_{0} \subseteq \mathscr{H}$. We shall prove that $\mathscr{H}=\mathscr{H}_{0}$ by showing that the dimension of \mathscr{H} does not exceed the degree of T_{0}, which is the dimension of \mathscr{H}_{0}. This approach is necessary since our technique leads to a somewhat different characterization of \mathscr{H}.

Theorem C. $\mathscr{H}=\mathscr{H}_{0}$.
Proof. Suppose $\left\{h_{k}\right\}_{0}^{\infty}$ belongs to \mathscr{H}. It follows from the argument used to prove Theorem B that the function $f(z)=\sum_{k=0}^{\infty} h_{k} p_{k}(z)$ belongs to \mathscr{F} and satisfies $T(D) f=0$. Set $F=T_{0}(D) f$. Then

$$
0=T(D) f=T_{1}(D)\left\{T_{0}(D) f\right\}=T_{1}(D) F
$$

Since $f \in \mathscr{F}$, it follows that $F \in \mathscr{F}$; therefore F satisfies

$$
\begin{equation*}
F^{(n)}(0)=o\left(r^{n}\right), \quad n \rightarrow \infty \tag{6}
\end{equation*}
$$

The solutions of $T_{1}(D) F=0$ are well known, and the only one which satisfies (6) is $F \equiv 0$. Therefore $T_{0}(D) f=0$. The dimension of the solution space of $T_{0}(D) f=0$ is equal to the degree of T_{0}, and to complete the proof, we need only show that the linear mapping which takes the sequence $\left\{h_{k}\right\}_{0}^{\infty}$ in \mathscr{H} onto the function $\sum h_{k} p_{k}(z)$ is $1-1$. This is equivalent to showing that $\sum h_{k} p_{k}(z)=0$ for all z implies $h_{k}=0, k=0,1,2, \cdots$. This was established in [2]; therefore the proof is complete.

References

1. R. P. Boas, Jr. and R. C. Buck, Polynomial expansions of analytic functions, Ergebnisse der Mathematik und ihrer Grenzgebiete, N.F., Band 19, Academic Press, New York; Springer-Verlag, Berlin, 1964. MR 29 \# 218.
2. J. D. Buckholtz, Appell polynomial expansions and biorthogonal expansions in Banach spaces, Trans. Amer. Math. Soc. (to appear).
3. W. T. Martin, On expansions in terms of a certain general class of functions, Amer. J. Math. 58 (1936), 407-420.
4. G. A. Read, Expansions in series of polynomials, J. London Math. Soc. 43 (1968), 655-657. MR 37 \# 4273.

Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506

[^0]: AMS (MOS) subject classifications (1970). Primary 30A62; Secondary 30A16.
 Key words and phrases. Appell polynomials, polynomial expansions.

