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This note is concerned with various "localized versions" of the spectral 
mapping theorem (cf. [3, VII.3.11]) for bounded linear operators in a 
complex Banach space. The details of the proof and some additional 
results will be published elsewhere. 

Let X be a complex Banach space and let Te B(X\ the Banach algebra 
of all bounded linear operators on X. We recall (cf. [2, p. 1], [3, p. 1931]) 
that if T has the single-valued extension property then there exist a 
maximal open set pT(x) containing p(T) and a unique holomorphic 
function xT:pT(x) -> X such that (XI — T)xT(À) = x for all XepT(x). 
The complementary set aT(x) = C — pT{x\ which we call the local 
spectrum of x (with respect to T), is compact and is contained in a(T\ 
the spectrum of T If F £ C is closed we introduce the spectral manifold 
XT(F)= {xeX:aT(x)^F}. 

THEOREM 1. Let ƒ be holomorphic on a neighborhood of a(T) and suppose 
that T and f(T) have the single-valued extension property. Then f{(TT(x)) = 
(7/(T)(x) for all x e X. 

This result2 was proved by the second-named author in his dissertation 
[4]. The proof given there is similar to the proof of a theorem due to 
Colojoarà and Foia§ ([1], [2, p. 71]). In fact, the conclusion of Theorem 1 
is equivalent to the condition that if F is a closed subset of a( ƒ (T)) = ƒ (cr(T)), 
then 

Xf(T)(F) = XT(f-l(F)). 

IfTeB(X) and Y is a (closed) subspace of X which is invariant under T, 
then the spectrum of the restriction T\Y may be either smaller or larger 
than <x(T). It is often desirable to limit attention to subspaces which do 
not increase the spectrum under restriction (e.g., ultra-invariant subspaces). 

THEOREM 2. Let Ybe a subspace invariant under Tsuch that a(T\ Y) £ cr(T) 
and let ƒ be holomorphic on a neighborhood of cr(T). Then Y is invariant 
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under f{T)J{T)\Y = f{T\Y),and 

f(cr(T\Y)) = o(f(T\Y)) = o{f(T)\Y) £ f(a(T)). 

If Y is an invariant subspace for T such that o(T\Y) ^ a(T) and if 
ye Y, then aT(y) £ O^IYO7)? but this inclusion can be proper. The next 
result holds for subspaces for which equality holds (e.g., spectral maximal 
spaces). 

THEOREM 3. Suppose that Y is a subspace invariant under T such that 
^riyiy) — GT(y) for all ye Y. Let ƒ be holomorphic on a neighborhood of 
G(T) and let T and f(T) have the single-valued extension property. IfyeY, 
we have 

Vfmwiy) = <Tf(T\Y)(y) = f(°T\Y(y)) = f(°Ay)) = v/miy)-

If Te B(X) and Y is a (closed) subspace of X which is invariant under T 
and if T/Yis the operator in the quotient space Xf Y defined by (T/Y)[x] = 
[Tx], then the spectrum of T/Y may be either smaller or larger than <r(T). 
It is often desirable to limit attention to subspaces which do not increase 
the spectrum under quotients (e.g., ultra-invariant subspaces). 

THEOREM 4. Let Y be a subspace invariant under T such that a(T/Y) <= 
a(T) and let f be holomorphic on a neighborhood ofo(T\ Then Y is invariant 
under f(T), f(T)/Y = f (T/Y), and 

f(a(T/Y)) = tr(f(T/Y)) = <j(f(T)/Y) s f(a(T)), 

In addition, if T, f(T\ T/Y, and f(T)/Y have the single-valued extension 
property and xe X, then we have 

ö-/(D/y(M) = <7/cr/Y)(l>]) = /frr/yflXI)) ^ / (M*) ) = ff/(T)(x). 
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