DECOMPOSABILITY OF HOMOTOPY LENS SPACES

BY KAI WANG

Communicated by Glen E. Bredon, September 25, 1972

Let A be the antipodal map of S^p and D^{p+1} . Let f be an equivariant diffeomorphism of $(S^p \times S^p, A \times A)$. Then there is a well-defined free involution A(f) on $\Sigma(f)$, where

$$\Sigma(f) = S^p \times D^{p+1} \cup_f D^{p+1} \times S^p$$

such that $A(f)|S^p \times D^{p+1} = A \times A$ and $A(f)|D^{p+1} \times S^p = A \times A$. In [2] G. R. Livesay and C. B. Thomas have shown that any free involution (Σ^{2p+1}, T) on the homotopy sphere Σ^{2p+1} is decomposable, i.e., there is an equivariant diffeomorphism f of $(S^p \times S^p, A \times A)$ such that (Σ^{2p+1}, T) is equivalent to $(\Sigma(f), A(f))$. For p = odd, let A be a linear Z_n action on S^p and D^{p+1} . We can generalize the notion of decomposable actions to Z_n actions. Using the same argument, they have shown that all free Z_3 actions on homotopy spheres are decomposable. The proof uses the following two well-known facts: (a) $J:KO(RP^p) \rightarrow J(RP^p)$ and

$$J: KO(L^{4n-1}(Z_3)) \to J(L^{4n-1}(Z_3))$$

are isomorphisms and (b) $Wh(Z_2)$ and $Wh(Z_3)$ are zero. The argument breaks down for Z_n actions, for $n \ge 4$. Hence they asked if there are similar properties for Z_n actions, for $n \ge 4$ ([2], [3]). On the other hand, we have studied the analogs for free actions of S^1 and S^3 on homotopy spheres. The same argument works if we replace (a) by some restrictions on the orbit spaces [7].

In this paper we will show that certain free Z_n actions on homotopy spheres are decomposable and the restrictions are nontrivial and necessary.

For $\varepsilon = h$ or s, let $\mathscr{S}^{\varepsilon}(L^{2m1})$ be the set of (simple, if $\varepsilon = s$) homotopy of complex dimension m. Then $\rho = \sum_{i=1}^{m} t^{r_i}$ where t is the basic complex one dimensional representation of Z_n defined to be the multiplication by $\exp(2\pi i/n)$. Let $p = \lceil m/2 \rceil$, $q = m - \lceil m/2 \rceil$. It is clear that

$$S^{2m-1}$$
, $S^{2p-1} \times D^{2q}$, $D^{2p} \times S^{2q-1}$ and $S^{2p-1} \times S^{2q-1}$

are invariant subspaces. Let

AMS(MOS) subject classifications (1970). Primary 57E30. Key words and phrases. Free Z_n actions, Wall groups, simple homotopy smoothings, decomposable actions, homotopy lens space.

$$\begin{split} L^{2m-1} &= L^{2m-1}(n; r_1, \dots, r_m) = S^{2m-1}/\rho, \\ M^{2m-1} &= M^{2m-1}(n; r_1, \dots, r_m) = S^{2p-1} \times D^{2q}/\rho, \\ N^{2m-1} &= N^{2m-1}(n; r_1, \dots, r_m) = D^{2p} \times S^{2q-1}/\rho, \\ K^{2m-2} &= K^{2m-2}(n; r_1, \dots, r_m) = S^{2p-1} \times S^{2q-1}/\rho. \end{split}$$

For $\varepsilon = h$ or s, let $\mathscr{S}^{\varepsilon}(L^{2m-1})$ be the set of (simple, if $\varepsilon = s$) homotopy smoothings of L^{2m-1} and G/O be the classifying space for G/O-bundles and let $L_{2m}(Z_n)^0$ be the reduced Wall group of Z_n . By the theorem of T. Petrie [5] (see also [1]) $L_{2m}(Z_n)^0$ acts freely on $\mathscr{S}^s(L^{2m-1})$. Let

$$\eta: \mathcal{S}^{\varepsilon}(L^{2m-1}) \to [L^{2m-1}, G/O]$$

be the normal map. W. Browder [1] has proved that η is onto if n is odd and according to C. T. C. Wall [6] the coker η is Z_2 if n is even.

Let $L^{2p-1} = L^{2p-1}(n; r_1, \dots, r_p)$ and $L^{2q-1} = L^{2q-1}(n; r_{p+1}, \dots, r_m)$. Let

$$\begin{split} &t_1^{\varepsilon}\colon \mathcal{S}^{\varepsilon}(L^{2m-1}) \xrightarrow{\eta} [L^{2m-1},G/O] \to [L^{2p-1},G/O],\\ &t_2^{\varepsilon}\colon \mathcal{S}^{\varepsilon}(L^{2m-1}) \xrightarrow{\eta} [L^{2m-1},G/O] \to [L^{2q-1},G/O],\\ &\bar{t}_1^{\varepsilon}\colon \mathcal{S}^{\varepsilon}(L^{2m-1}) \xrightarrow{t_1^{\varepsilon}} [L^{2p-1},G/O] \to [L^{2p-1},BO],\\ &\bar{t}_2^{\varepsilon}\colon \mathcal{S}^{\varepsilon}(L^{2m-1}) \xrightarrow{t_2^{\varepsilon}} [L^{2q-1},G/O] \to [L^{2q-1},BO]. \end{split}$$

PROPOSITION 1. Let X^{2m-1} be a closed manifold which is homotopy equivalent to $L^{2m-1}(n;r_1,\ldots,r_m)$. Suppose that there is an h-cobordism W^{2m-1} of $K^{2m-2}(n;r_1,\ldots,r_m)$ to itself so that

$$X^{2m-1} \cong M^{2m-1}(n; r_1, \dots, r_m) \cup W^{2m-1} \cup N^{2m-1}(n; r_1, \dots, r_m).$$

Then for any homotopy equivalence

$$f: X^{2m-1} \to L^{2m-1}(n; r_1, \dots, r_m),$$

 $t_i^h([X^{2m-1}, f]) = 0$ and $t_i^s([X^{2m-1}, f]) = 0$ if f is a simple homotopy equivalence, i = 1, 2.

It is easy to see that for $n \ge 4$, there is $x \in [L^{2m-1}, G/O]$ such that $x|L^{2p-1} \ne 0$ and if n is even we may choose $x \in \text{Im } \eta$. Suppose $x = \eta([X^{2m-1}, f])$. Hence X^{2m-1} cannot be decomposable. Furthermore, for $w \in L_{2m}(\mathbb{Z}_n)^0$,

$$t_1^s(w + [X^{2m-1}, f]) = t_1^s([X^{2m-1}, f]) \neq 0.$$

Since rank $L_{2m}(Z_n)^0 \ge 1$ for $n \ge 4$ [5], we have

COROLLARY 2. For $m \ge 3$ and $n \ge 4$, there are infinitely many inequiva-

lent nondecomposable free Z_n actions on homotopy (2m-1)-spheres of which the orbit spaces are simple homotopy equivalent to $L^{2m-1}(n; r_1, \ldots, r_m)$.

Theorem 3. Let X^{2m-1} be a closed manifold which is homotopy equivalent to $L^{2m-1}(n;r_1,\ldots,r_m)$. Suppose that there is a simple homotopy equivalence

$$f: X^{2m-1} \to L^{2m-1}(n; r_1, \dots, r_m),$$

such that $\bar{t}_i^s([X^{2m-1}, f]) = 0$, i = 1, 2. Then X^{2m-1} is decomposable.

The proof can be sketched as follows. Let f' be the homotopy inverse of f. By assumption, we can modify f' to make $f'|M^{2m-1}$ and $f'|N^{2m-1}$ be embeddings. Then

$$W = X^{2m-1} - \text{int } f'(M^{2m-1}) - \text{int } f'(N^{2m-1})$$

is an h-cobordism of K^{2m-2} to itself. When f is a simple homotopy equivalence, we can show that W is equivalent to a product. Therefore, X^{2m-1} is decomposable.

Suppose there is an h-cobordism W of K^{2m-2} to itself such that $X^{2m-1} = M^{2m-1} \cup W \cup N^{2m-1}$. We can choose a homotopy equivalence $h: X^{2m-1} \to L^{2m-1}$ such that $h|W:W \to K^{2m-2} \times [0,1]$ is a homotopy equivalence and $h|\partial W$ is a diffeomorphism. Then $\tau(h) = i_*\tau(h|W)$ where $i_*: \operatorname{Wh}(\pi(K^{2m-2} \times [0,1])) \to \operatorname{Wh}(\pi(L^{2m-1}))$ induced by

$$i \colon\! K^{2m-2} \times [0,1] \hookrightarrow L^{2m-1}$$

and $\tau(h)$ is the torsion of h. If X^{2m-1} is decomposable $\tau(h|W)=0$. Hence $\tau(h)=0$. Thus we have proved

THEOREM 4. Let X^{2m-1} be a closed manifold which is homotopy equivalent to $L^{2m-1}(n;r_1,\ldots,r_m)$. Suppose X^{2m-1} is decomposable, then X^{2m-1} is simple homotopy equivalent to $L^{2m-1}(n;r_1,\ldots,r_m)$.

For $u \in 2\mathrm{Wh}(Z_n)$, there is an h-cobordism W_u of K^{2m-2} to itself such that $\tau(W_u, K) = u$. Let $X_u = M^{2m-1} \cup W_u \cup N^{2m-1}$. Let \widetilde{W}_u and \widetilde{X}_u be the universal coverings of W_u and X_u respectively. \widetilde{W}_u is an h-cobordism of $S^{2p-1} \times S^{2q-1}$ to itself. $S^{2p-1} \times S^{2q-1}$ is simply-connected. Then $\widetilde{W}_u \simeq S^{2p-1} \times S^{2q-1} \times [0,1]$ and \widetilde{X}_u is a homotopy sphere supporting a free Z_n action with orbit space X_u . W_u is homotopy equivalent to $K^{2m-2} \times [0,1]$. Let $H_u: W_u \to K^{2m-2} \times [0,1]$ be a homotopy equivalence such that $H_u|\partial W_u$ is a diffeomorphism. Let $h_u = \mathrm{id} \cup H_u \cup \mathrm{id}$. Then $h_u: X_u \to L^{2m-1}$ is a homotopy equivalence and $\tau(h_u) = u$.

COROLLARY 5. For $n \ge 4$, there are infinitely many closed manifolds X_u^{2m-1} which are homotopy equivalent to $L^{2m-1}(n;r_1,\ldots,r_m)$ such that $t_i^k(X_u^{2m-1})=0$, i=1,2, but none of X_u^{2m-1} are simple homotopy equivalent to $L^{2m-1}(n;r_1,\ldots,r_m)$.

392 KAI WANG

Using the same techniques in [7] we can prove

THEOREM 6. Let (Σ^{2m-1}, Z_n) be a decomposable free Z_n action on homotopy sphere Σ^{2m-1} . Then Σ^{2m-1} supports infinitely many inequivalent free Z_n actions of which the orbit spaces are of same simple homotopy type.

REMARK 7. If $r_i = r_{p+1}$, i = 1, ..., p. Then the condition in Theorem 3 can be weakened to require that $\bar{t}_2^s([X^{2m-1}, f]) = 0$.

REMARK 8. Suppose n is odd. Let $A: \mathcal{S}^s(L^{2k-1}) \to C^{Z_{n-1}}$ be the Ativah-Singer invariants [5]. For $x \in [L^{2k-1}, G/O]$, let $x = \eta(a)$ for $a \in \mathcal{S}^s(L^{2k-1})$. Define $\overline{A}(x) = A(a)$. Using results in [6] it is easy to show that \overline{A} is well defined. Let

$$T_1: \mathcal{S}^s(L^{2m-1}) \xrightarrow{\eta} [L^{2m-1}, G/O] \to [L^{2p-1}, G/O] \xrightarrow{\overline{A}} C^{Z_n-1}$$

$$T_2: \mathcal{S}^s(L^{2m-1}) \xrightarrow{\eta} [L^{2m-1}, G/O] \to [L^{2q-1}, G/O] \xrightarrow{\overline{A}} C^{Z_n-1}.$$

Then we can replace the condition in Theorem 3 by requiring that $T_i([X^{2m-1}, f]) = 0, i = 1, 2.$

REMARK 9. Theorem 3, Theorem 4 and Theorem 5 have been independently obtained by Chao-chu Liang, who is a student of G. R. Livesay.

REFERENCES

- 1. W. Browder, Free Z_p -actions on homotopy spheres, Proc. Georgia Conf. in Topology of Manifolds (Inst. Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 217–226. MR 43 #2720.
- 2. G. R. Livesay and C. B. Thomas, Free Z_2 and Z_3 actions on homotopy spheres, Topology
- 7 (1968), 11-14. MR 36 #3343.

 3. G. R. Livesay and C. B. Thomas, Problem 9 in "Problems", Proc. Conf. on Transformation Groups (New Orleans, 1967), Springer-Verlag, Berlin and New York, 1968, pp. 235-236.
- 4. J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426. MR 33
- **5.** T. Petrie, The Atiyah-Singer invariant, the Wall groups and the function $(te^x + 1)/(te^x 1)$, Ann. of Math. (2) 92 (1970), 174–187.
- 6. C. T. C. Wall, Surgery on compact manifolds, Springer-Verlag, Berlin and New York,
- 7. K. Wang, Free and semi-free smooth actions of S^1 and S^3 on homotopy spheres, Proc. Conf. on Transformation Groups (Amherst, 1971), Springer-Verlag, Berlin and New York, 1972.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS 60637

INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540 (Current address.)