DIFFERENTIABLE ACTIONS OF S^1 AND S^3 ON HOMOTOPY SPHERES

BY KAI WANG

Communicated by Glen E. Bredon, July 12, 1972

Introduction. The purpose of this note is to announce some results on free actions of S^1 and S^3 on homotopy spheres. In the following, most of the discussion of S^3 actions will be omitted since it is completely analogous to S^1 actions. Let S^1 act on $S^{2p-1} \times S^{2q-1}$ by g(x, y) = (gx, gy) for $g \in S^1$ and $(x, y) \in S^{2p-1} \times S^{2q-1}$. It is always assumed that $q \le p$. This is a free action and let $K^{p+q,q}$ be the orbit space. Here is the motivation for this work. Let f be a diffeomorphism of $K^{p+q,q}$ which is homotopic to the identity. Let \vec{f} be its covering which is an equivariant diffeomorphism of $S^{2p-1} \times S^{2q-1}$. The manifold $\Sigma(\bar{f}) = S^{2p-1} \times D^{2q} \cup_{\bar{f}} D^{2p} \times$ S^{2q-1} obtained by gluing along $S^{2p-1} \times S^{2q-1}$ via \bar{f} is a homotopy sphere. $\Sigma(\bar{f})$ supports a free S^1 action defined by g(x, y) = (gx, gy) where $g \in S^1$ and $(x, y) \in S^{2p-1} \times D^{2q}$ or $D^{2p} \times S^{2q-1}$. It is easy to check that this action depends only on the pseudo-isotopy class α of f and will be denoted by $(\Sigma(\alpha), S^1)$. Let $P(\alpha)$ be the orbit space. Note that $(\Sigma(\alpha), S^1)$ is a free S^1 action on homotopy (2p + 2q - 1)-sphere with standard characteristic (2q - 1)-sphere i.e. the induced action on which is linear. Let $A^{n,q}$ be the set of all free S^1 actions on homotopy (2n-1)-spheres with standard characteristic (2q - 1)-spheres. For q = [(n + 1)/2], $A^n =$ $A^{n,q}$ is the set of all decomposable S^1 actions on homotopy (2n-1)spheres. Similarly let B^n be the set of all decomposable S^3 actions on homotopy (4n-1)-spheres (see [6]). For $x \in A^{n,q}$, let $s_{2k}(x)$ be the splitting invariants (see [5]). The main result is the following:

Theorem. There is a natural group structure on A^n (respectively, B^n) which makes A^n (respectively, B^n) a finitely generated abelian group of which the torsion part consists of all tangential homotopy complex projective spaces (respectively, tangential homotopy quaternion projective spaces) and rank $A^n = [(n+1)/4] - 1$ if $n ext{ is odd or } [(n+1)/4]$ if $n ext{ is even (respectively, } [n/2] - 1$). Furthermore, $s_{2k}: A^n \to L_{2k}(e)$ and $s_{4k}: B^n \to Z$ are homomorphisms.

REMARK. The computations of torsions of A^n or B^n are reduced to the computations of $[CP^{n-1}, F]$ or $[QP^{n-1}, F]$.

AMS (MOS) subject classifications (1970). Primary 57E30.

Key words and phrases. Free actions, splitting invariants, tangential homotopy complex projective spaces.

Applications. Since ker s_{2k} consists of all free S^1 actions on homotopy (2n-1)-spheres with characteristic (2k-1)-spheres; hence

COROLLARY 1. There exist infinitely many topologically inequivalent free S^1 actions on homotopy (2n-1)-spheres with characteristic homotopy (2k-1)-spheres for $n \ge k \ge 4$ and (a) $n \ge 7$ if n is odd, (b) $n \ge 6$ if both n and k are even and (c) $n \ge 8$ if n is even and k is odd.

REMARK. A similar result has been obtained by H.-T. Ku (see also [1]) using the techniques of W. C. Hsiang (see [2]). Our methods are different from theirs and the dimensions are much better than one can get from their papers.

Recall a theorem in [6]: An S^3 action is decomposable if and only if its restriction to S^1 is decomposable. Now rank $B^n < \text{rank } A^{2n}$, and we have the following:

COROLLARY 2. For $n \ge 3$, there are infinitely many topologically inequivalent free S^1 actions on homotopy (4n-1)-spheres which are not extendable to free S^3 actions.

Sketch of the proofs. Let $D^{n,q}$ be the group of pseudo-isotopy classes of diffeomorphisms of $K^{n,q}$ which are homotopic to the identity. Then the construction which is described in the Introduction yields a well-defined map $\psi: D^{n,q} \to A^{n,q}$. Using the techniques of G. R. Livesay and C. B. Thomas [4] (see also [6]) we can show

PROPOSITION 1. ψ is onto.

Consider the following exact sequence of Wall-Sullivan

$$0 \to \mathsf{hS}(K^{n,q} \times I, \partial(K^{n,q} \times I)) \xrightarrow{d} [\Sigma K^{n,q}, G/O] \xrightarrow{s} L_{2n-2}(e).$$

where $hS(K^{n,q} \times I, \partial(K^{n,q} \times I))$ is the set of homotopy smoothings of $K^{n,q} \times I$ relative to the boundaries. It is well-known that there is a group structure on $hS(K^{n,q} \times I, \partial(K^{n,q} \times I))$ such that d and s are homomorphisms. In our case $hS(K^{n,q} \times I, \partial(K^{n,q} \times I))$ is abelian since $[\Sigma K^{n,q}, G/O]$ is abelian. Define a map b: $hS(K^{n,q} \times I, \partial(K^{n,q} \times I)) \to D^{n,q}$ as follows. Let $h: M \to K^{n,q} \times I$ be a homotopy equivalence such that $h|\partial M: \partial M \to \partial(K^{n,q} \times I)$ is a diffeomorphism; $\partial M = \partial_0 M - \partial_1 M$. Let $h_0 = h|\partial_0 M$ and $h_1 = h|\partial_1 M$. Then set $b(M, h) = h_0 \cdot h_1^{-1}$.

PROPOSITION 2. b is an epimorphism and ker b is finite.

THEOREM 3. $D^{n,q}$ is an abelian group and rank $D^{n,q} = \text{rank } H^{4^{*-1}}(K^{n,q}, Q) - r^n$ where $r^n = 1$ if n is odd and $r^n = 0$ if n is even.

For
$$\alpha \in D^{n,q}$$
, let $s_{2k}(\alpha) = s_{2k}(P(\alpha))$.

THEOREM 4. s_{2k} are homomorphisms and s_{4k} are nontrivial for $2q \le 4k < 2n$.

This is proved by studying the following two commutative diagrams,

and

$$hS(K^{n,q} \times I, \partial(K^{n,q} \times I)) \xrightarrow{\downarrow b} L_{2k-2}(e)$$

$$D^{n,q} \xrightarrow{} D^{n,q} \xrightarrow{} L_{2k-2}(e)$$

where the maps in diagrams are defined in the obvious way.

THEOREM 5. For $\alpha \in D^{n,q}$, α is of finite order if and only if $P(\alpha)$ is tangential homotopy equivalent to $\mathbb{C}P^{n-1}$.

This follows from the fact that a homotopy complex projective space P is tangential equivalent to CP^{n-1} if and only if $s_{4k}(P) = 0$ for all k.

Theorem 6. For $n/2 \le q \le 2n/3$, there is a group structure on $A^{n,q}$ defined by $P(\alpha) * P(\beta) = P(\alpha \cdot \beta)$ and $\psi: D^{n,q} \to A^{n,q}$ is an epimorphism.

Let $G^{n,q}$ be the subgroup of $D^{n,q}$ which is generated by those diffemorphisms of $K^{n,q}$ which are extendable to either diffeomorphisms of $S^{2p-1} \times_{S^1} D^{2q}$ or diffeomorphisms of $D^{2p} \times_{S^1} S^{2q-1}$.

THEOREM 8. For $n/2 \le q \le 2n/3$, ker $\psi = G^{n,q}$.

THEOREM 9. For $n/2 \le q \le 2n/3$, $G^{n,q}$ is a finite group (see [6]).

Finally,

THEOREM 10. For $n/2 \le q \le 2n/3$, $A^{n,q}$ is a finitely generated abelian group and rank $A^{n,q} = \operatorname{rank} D^{n,q}$.

REFERENCES

- 1. W. Browder and T. Petrie, Semi-free and quasi-free S¹ actions on homotopy spheres, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 136–146. MR 41 #7716.

 2. W. C. Hsiang, A note on free differentiable actions of S¹ and S³ on homotopy spheres, Ann. of Math. (2) 83 (1966), 266–272. MR 33 #731.

 3. H. T. Ku, Characteristic invariants, Proc. Conference on Transformation Groups (Amherst, 1971), Springer (to appear).

 4. G. R. Livesay and C. B. Thomas, Free Z₂ and Z₃ actions on homotopy spheres, Topology 7 (1968), 11–14. MR 36 #3343.

 5. C. T. C. Wall, Surgery on compact manifolds, Academic Press, New York, 1971.

 6. K. Wang, Free and semi-free smooth actions of S¹ and S³ on homotopy spheres, Proc. Conference on Transformation Groups (Amherst, 1971), Springer (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS 60637 Current address: School of Mathematics, The Institute for Advanced Study, Princeton, New Jersey 08540