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1. Introduction. The principal result of this paper is that if D is an 
invariant differential operator on a symmetric space X of the noncompact 
type then, for each function ƒ e C°°(X), the differential equation Du = ƒ 
has a solution u e C°°(X). This is proved by means of a Paley-Wiener 
type theorem for the Radon transform on X. As a consequence we also 
obtain a Paley-Wiener theorem for the Fourier transform on X, that is 
an intrinsic characterization of the Fourier transforms of the functions 
in Cf(X\ In [2], Eguchi and Okamoto characterized the Fourier trans­
forms of the Schwartz space on X. Invoking in addition the division theorem 
of Hörmander [16] and Lojasiewicz [18] we obtain by the method of 
[11] the surjectivity of D on the space of tempered distributions on X. 

Finally, as a consequence of a structure theorem of Harish-Chandra 
[8] for the bi-invariant differential operators on a noncompact semisimple 
Lie group G, we obtain a local solvability theorem for each such operator. 

2. The range of invariant differential operators. Let I b e a symmetric 
space of the noncompact type, that is a coset space G/K where G is a 
connected, noncompact semisimple Lie group with finite center and K 
a maximal compact subgroup. Let D(X) denote the set of differential 
operators on X, invariant under G and let C°°(X) denote the set of all 
C00 functions on X and Cf{X) the set of/ e C°°(X) of compact support. 

THEOREM 2.1. Let D ± 0 in D(X). Then 

DC™{X) = C°°(X). 

As in Malgrange 's proof of an analogous theorem for constant coefficient 
operators on Rn ([3], [20]) our proof proceeds by proving that if V is a 
closed ball in X then 

/eQ°(X),supp(I>/) c V implies supp(/) <= V, 

supp denoting support. This is proved by means of Theorem 2.2 below 
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for the Radon transform [10] ƒ -> ƒ on X. If £ is a horocycle in X then 
ƒ(£) is the integral of ƒ over ^. The following Paley-Wiener type theorem 
for the Radon transform is the analog for X of Theorem 2.1 in [12]. The 
proof is however quite different and is in part based on Harish-Chandra's 
expansion for general Eisenstein integrals on G [7]. I am indebted to 
Harish-Chandra for communicating to me this expansion which has not 
been published, but will appear in [22]. It is a generalization of the asymp­
totic expansion for the spherical functions in [6]. 

THEOREM 2.2. Let L e C™(X) and let V be a closed ball in X. Assume 
ƒ (£) = 0 whenever the horocycle £, in X is disjoint from V. Then f(x) = 0 
for x^V. 

REMARK. Instead of assuming ƒ e CC°°(X) it suffices to assume that the 
function g -• f(gK) belongs to the Schwartz space on G in the sense of 
[9, p. 19]. 

The analog of Theorem 2.1 for left invariant differential operators D 
on a Lie group L is in general false. In fact, it was proved to me by 
Hörmander in 1964 (independently proved in Cerèzo-Rouvière [1]) that 
if for a given L one assumes local solvability for every D then either L is 
abelian or has an abelian normal subgroup of codimension 1. However 
for each bi-invariant (i.e., left and right invariant) operator on the semi-
simple group G we have the following local solvability result. 

THEOREM 2.3. There exists an open neighborhood V of e in G with the 
following property : For each bi-invariant differential operator D =/= 0 on G, 

DC°°(F) 3 CC°°(K). 

The proof is easily deduced from a structure theorem for D (Harish-
Chandra [8 p. 477]) combined with Proposition 1.4 in Raïs [21] which 
deals with nilpotent groups. 

3. The Fourier transform on X. Let G = KAN be an Iwasawa decom­
position of G, A and N being abelian and nilpotent, respectively. Let a 
denote the Lie algebra of A, a* its dual and a* the complexification of 
a*. If X e a* let Im X denote its imaginary part. Let |/l| denote the norm on 
a* given by the Killing form of the Lie algebra of G. If H e a the map 
X -• [H, X] is an endomorphism of the Lie algebra n of N whose trace 
we denote 2p(H). Let M be the centralizer of A in K, put B = K/M and 
let db be the K-invariant measure on B with total measure 1. For xeX, 
b = kM e B, let A(x, b) e a be determined by n e N, x = kn exp A(x, b)K. 
Fixing a G-invariant measure dx on X the Fourier transform ƒ of a 
function ƒ on X is defined by 
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f(X,b)= f ei-a-hp)(A(x'b))f(x)dx 
Jx 

for all A e a*, beB, for which this integral converges absolutely [13]. 
It satisfies 

B B 

for feCf(X\ and every element 5 in the Weyl group W oî X, and the 
mapping ƒ -> ƒ extends to an isometry of L2(X, dx) onto 

L2(ct* x B,\c(X)\~2dXdb) 

[15, pp. 120, 124]. Here a* is the positive Weyl chamber in a* c(X) is 
Harish-Chandra's c-function and dk is a suitably normalized Euclidean 
measure on a*. Combining this characterization of L2(X) with Theorem 
2.2, we obtain a characterization of the Fourier transforms of C?{X). 

DEFINITION. A C00 function \j/(À9 b) on a? x B, holomorphic in À, will 
be called a holomorphic function of uniform exponential type if there exists 
a constant A ^ 0 such that, for each polynomial P{X) on a*, 

sup e~Allm^\P(X)il/(^b)\ < oo. 
Aea%,bsB 

THEOREM 3.1. The mapping ƒ -• ƒ is a bijection of C?(X) onto the space 
of holomorphic functions of uniform exponential type satisfying (1). 

For the case when ƒ is assumed X-invariant this reduces to a known 
result ([4, p. 434], for SL(2,R), [14], [5], [15, p. 37]). Finally, let Sf\X) 
denote the dual space of the Schwartz space Sf(X). Its elements are distri­
butions on X, the tempered distributions. In the manner indicated in the 
introduction we obtain an extension of Theorem 4.2 in [11]. 

THEOREM 3.2. Let D ± 0 in D(X). Then 

DSf\X) = &"(X). 
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