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ABSTRACT. Over the category of PL manifolds there is a fibered cate­
gory whose objects are certain equivalence classes [&] of "PL sheaves" 
#", to which one assigns real characteristic classes as in [2] and [3]. In 
particular each PL manifold M possesses a distinguished (co)tangent 
object [£{M)] and a real Pontrjagin class p([éû{M)]). In this note we show 
that p([*(M)]) is the image under H**(M;Q)-+H**(M;R) of the 
Thom-Pontrjagin class of M. 

The construction of [2] and [3] assigns total Chern classes 
c([«f])eH2*(M;i?) to cosets [J5"] of complex PL sheaves 3F over a PL 
manifold M, and this assignment satisfies certain axioms. As in the 
classical case one defines the total Pontrjagin class p([^])eH4*(M;R) 
of a coset [#"] of real PL sheaves via complexification of [#"], and here are 
the corresponding axioms : 

if [SF] is a coset of real PL sheaves of "rank" m on a PL 
,p , manifold M then the total Pontrjagin class p{[^]) is an 
[ l} element 1 + px([&]) + • • • + piml2]([&])ofH*(M;R)with 

Pi([^])eH4i(M;R); 

{T>. p(SOT) = S*p([^])Gf/4*(iV;i?) for any PL map 
^l] S : i V ^ M ; 

/ P x P([^] © t^]) = P([^]) u p([&]) for any cosets [&] and 
( 3J [3?] over M ; 

if [ # ] contains a bona fide real vector bundle Ç over M (as 
(P4) in [2] or [3]) then p([^]) is the classical total Pontrjagin 

classp(£)eH4*(M;K). 

LEMMA 1. If a PL manifold M happens to admit a smooth structure with 
tangent bundle zM then p([$(M)]) = P(TM)-

PROOF. One easily verifies as in [2] that [&(M)] contains TM; hence it 
suffices to apply (P4). 

As in the smooth case one uses axioms (P^, (P2), (P3) and the multi­
plicative sequence corresponding to z1/2/(tanh z1/2) to construct the 
Hirzebruch polynomial !{[&]) e H4*(M; R) of the Pontrjagin class p{[&]\ 
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and one defines the L-genus L(M) of any compact oriented PL manifold 
M of dimension An by setting L(M) = < ln{[S{M)]\ [M] > for the funda­
mental class [M]eH4n(M;R). The index I(M) is defined as usual, and 
the classical Hirzebruch index formula combines with Lemma 1 to 
guarantee that L(M) = I(M) whenever the PL manifold M happens to 
have a smooth structure. 

LEMMA 2. L(M) = I(M) for any compact oriented PL manifold M of 
dimension 4n. 

PROOF. One easily verifies as in the smooth case that 

L(M + N) = L(M) + L(N), L(-M)= -L{M\ L(M x N) = L(M)L(N) 

and L(boundary) = 0, so that L may be regarded as a homomorphism 
Q*L ® R -» R> Hence it will suffice to verify that the homomorphism L 
agrees on generators with the corresponding homomorphism 
J:Q*L ® R -*• R> But the homomorphism Q*-» QjL is injective (by (P4), 
for example), which yields an exact sequence 

0 ^ Q, -+ Q f - Çfq
L/Qq -> 0 

in each dimension q, and Williamson showed in [5] that each fî£L/£\ is 
finite. Hence Q* ® R -> Q*L ® R is an isomorphism, so that each class 
in Q*L (g) R contains at least one smooth manifold ; but we already know 
from Lemma 1 that L(M) = I(M) for smooth manifolds M. 

Now for any PL manifold M let P(M) e HA\M ;R) be the image under 
H*(M ;Q) -+ H*(M;R) of the rational Pontrjagin class constructed by 
Thorn in [4]. (See [1] for an alternate version of Thorn's construction.) 
Thorn's construction established the existence of unique rational classes 
satisfying certain axioms, which we translate as follows into real cohomo-
logy: 

for each oriented PL manifold M of dimension m the class 
(Tx) P(M) is of the form 1 + PX{M) + • • • + P[m/2](M) with 

P f (M)e# 4 l (M;K); 

to each embedding i:N -+ M of one oriented PL manifold 
(T2) into another one can assign a "normal" class 

Q(N) e H**(N;R) satisfying P(N) u Q(N) = i*P(M); 

if l'(M)eH4*(M;R) is the Hirzebruch polynomial con-
(T v structed from z1/2/(tanh z1/2) and P(M) then the L-genus 

3 defined for any 4n-dimensional compact oriented PL 
manifold M by L(M) = < l'n(M\ [M] > satisfies L(M)=I(M). 

Here is the main result of this note, which permits one to conclude 
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that the Pontrjagin classes p([#l) form an extension of the Thom-
Pontrjagin construction to a reasonable fibered category over the 
category of PL manifolds : 

PROPOSITION. p([<T(M)]) = P(M) e H4*(M;R) for any PL manifold M. 

PROOF. It suffices to verify that the classes p([< (̂M)]) satisfy Thorn's 
axioms. But (Tx) is an immediate consequence of (P^, (T2) follows 
easily from (P2) and (P3), and (T3) follows from Lemma 2. 
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