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Let ƒ (z) be a transcendental entire function. If rk is the radius of the 
largest disk with center at 0 in which ƒ {k)(z) is zero-free, it is known that, 
when ƒ (z) is of positive finite order p and a > p, there is an infinite in
creasing sequence of values of k such that rk ^ /c (1 /a)_1 (Âlander [1] for 
p < 1 ; stated by Pólya [4] for p > 1 also ; the first published proof for 
p > 1 was given by Erdös and Rényi [3], where Âlander's result is mis
quoted as being for p > 1). When p = 1 and f(z) is of exponential type T 
it is known more precisely that rk ^ c(x) (Takenaka [5]; for modern 
results see Buckholtz and Frank [2]). 

We have established the existence of larger zero-free disks if they are 
no longer required to be centered at 0. Our principal results are as follows. 

THEOREM 1. Iff(z) is an entire function at most of order Infinite type, there 
is an arbitrarily large disk, somewhere in the plane, in which an infinity of 
f(k)(z) are zero-free. 

This is a corollary of Âlander's theorem for p < 1, but not fori ^ p ^ 2. 
The conclusion of Theorem 1 fails for entire functions of order greater 

than 2. 

THEOREM 2. If p > 2, there is an entire function of order p such that, 
for some positive A, every disk, anywhere in the plane, of radius A contains 
a zero of every f(k)(z). 

THEOREM 3. Iff(z) is an entire function of finite order p ^ 2, and a > p, 
there is a point z0 such that, for an infinity of k, we have f(k)(z) # 0 in 
\z-z0\ </c ( 1 / a )-1 / 2 . 

Theorem 3 shows that when we do not require the concentric zero-free 
disks to be centered at a prescribed point, they can be appreciably larger 
than in Pólya's theorem. 

THEOREM 4. If f(z) is an entire function, for every (arbitrarily large) c > 0, 
there is a z0 such that f{k)(z) =£ 0 in \z — z0\ < ck~il2 for an infinity of k. 

THEOREM 5. Iff(z) is analytic in \z\ < R, there are a (possibly small) c> 0 
and a point z0 in \z\ < R such that f{k)(z) ^ 0 in \z — z0\ < ck~i/2 for an 
infinity ofk. 
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Results of this character are not altogether unexpected. For example, 
if f(z) is of order p, so is each of its derivatives. Consequently each f(k)(z) 
has at most 0(JRP+£) zeros in a disk of radius R; when p < 2 this means 
that, for each k, if R is large enough, \z\ < R contains an arbitrarily large 
disk in which ƒ ik\z) ^ 0. In Theorem 1, however, we have a single disk 
that is zero-free for each of an infinity of derivatives ; and in Theorems 
3-5 we have a sequence of concentric disks, of diminishing radii, such 
that, for a subsequence, each disk is zero-free for the corresponding 
derivative. To establish such results we require estimates, more precise 
than those used by Erdös and Rényi, for the number of zeros of f(k)(z) 
is a disk of prescribed radius. 

It is interesting that the dividing line between "small order" and 
"large order" in this work is at order 2, rather than at order 1 as in the 
work of Âlander and Pólya; particularly since there are other indications 
(Pólya [4]) that the zeros of successive derivatives tend to become scattered 
for order less than 2 and to become concentrated for order greater than 2. 
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