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FUNCTIONS OF SEVERAL NONCOMMUTING VARIABLES1 

BY JOSEPH L. TAYLOR2 

The notions of nonsingularity, resolvent set, and spectrum, and the 
corresponding analytic functional calculus for n-tuples of elements of a 
commutative Banach algebra provide some of the deepest and most 
potent tools of modern analysis. A point of view one can adopt regarding 
this theory is as follows: The class of algebras (9(U)9 for U a domain in 
Cn

9 provides a relatively small, well-understood, and nicely behaved class 
of topological algebras with distinguished tuples (zl9..., zn) of elements; 
furthermore, spectral theory and the Shilov-Arens-Calderón Theorem 
(cf. [17]) give precise information regarding which algebras &(U) can be 
mapped into a given commutative Banach algebra (or F-algebra) by a 
continuous homomorphism carrying (zl9...9zn) onto a specified tuple 
of elements. Thus, the algebras &(U) and tuples (zl9...9zn) provide a 
tractable class of models for the behavior of n-tuples of elements of a 
commutative topological algebra. 

In [7] and [8] we showed how to extend spectral theory and the analytic 
functional calculus in a well-defined manner to the study of commuting 
n-tuples of operators on a Banach space. From this point of view, the 
pairs (0(U)9 (zu...9zn)) provide models for the behavior of n-tuples of 
operators. 

It must occur to nearly every analyst who encounters joint spectral 
theory to wonder whether or not there are useful notions of nonsingularity 
and spectrum for tuples in a noncommutative algebra or for noncommu-
ting tuples of operators. From the point of view we have adopted regarding 
spectral theory, a more meaningful question is the following: Is there a 
reasonably small, well behaved class of pairs (A9(zl9...9zn))9 consisting 
of an algebra A and an n-tuple (zl9..., zn) of elements of A9 that will serve 
as models for the behavior of fairly general (noncommutative) n-tuples 
of algebra elements or n-tuples of operators? Given such a class, the 
analogue of spectral theory and the functional calculus would consist of 
techniques for deciding which models (A9(zl9...9 zn)) can be mapped into 
a given algebra n-tuple pair (B9(al9...9 an))9 or equivalently, which models 
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(A9(zl9. ..9zn)) have representations on a given space X for which the 
elements zl9..., zn act as given operators al9...9ane L(X). 

The above question has intrigued us for some time. Our definition in 
[7] of joint spectrum for commuting n-tuples of operators can be phrased 
in terms of concepts from homological algebra which make perfectly 
good sense in noncommutative situations (cf. [9]); that is, our version of 
commutative joint spectral theory can be viewed as the study of certain 
homological relations between modules over the n-variable polynomial 
algebra Pn ; and these are relations which also make sense for modules over 
more general (even noncommutative) algebras. This suggested that 
homological algebra might provide the key to defining and studying a 
class of models for the noncommutative situation. The pursuit of this 
idea led to a paper [10] on homology and cohomology for topological 
algebras, and another [11] applying this work to obtain a version of 
spectral theory which makes sense in a wide variety of situations (both 
commutative and noncommutative). Here we shall review those portions 
of this latter paper (with the homological algebra suppressed) that relate 
directly to the study of noncommutative w-tuples of operators, and also 
present some more recent results on the subject. 

In order to develop a class of models (A9(zl9...9 zn)) for the behavior 
of noncommutative rc-tuples, we begin with the free algebra Fn on n-
generators zl9..., z„ and identify certain embeddings Fn -> A of Fn in 
"satellite" algebras A. These algebras are to be in some sense algebras of 
functions of the free variables zl9..., zn—just as the algebras (9{U) are 
algebras of functions of the generators of the polynomial algebra Pn. 

A brief discussion of the single variable functional calculus may be 
helpful in understanding what we shall be doing. Thus, let a e L(X) be a 
bounded linear operator on the Banach space X. Then a determines an 
algebra homomorphism p -• p(a) from the polynomial algebra P into 
the algebra L(X)9 that is, a representation of P on X (or a P-module 
structure on X). Now the algebra P is canonically embedded in each of 
the algebras &{U) (the algebra of all holomorphic functions on U) for U 
a domain in C. Hence, we can ask the question: For which algebras &(U) 
does the representation of P on X determined by a extend to a (continuous) 
representation of (9(U) on XI Of course, the answer is supplied by the 
analytic functional calculus: The representation extends to 0{U) if and 
only if U contains the spectrum of the operator a; furthermore, the exten­
sion is unique if it exists. 

The fact that the above question has such a nice answer is no accident. 
It is due to the fact that there is a very special relationship between the 
algebra P and the algebras &( U). If A is any topological algebra and cp a 
representation of A on an l.c.s. X9 one could ask the question: For which 
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embeddings, A -» £, of A in other topological algebras, £, is it true that 
the representation extends uniquely to a representation of Bl One would 
not, however, expect such a general question to have a reasonable answer. 
For a given A, however, it might be possible to identify a class of "satellite" 
algebras B containing A for which the question is tractable for a sufficiently 
restricted class of representations <p. This is certainly the case for P; the 
class of "satellite" algebras is the class of algebras (9{U)\ for these, and the 
representations of P on Banach spaces, the functional calculus problem 
has a nice answer. 

What is special about the relationship between P and the algebras 
(9(U)1 In some sense the elements of (9{U) are functions of the generator 
of P. However, there is a more precise statement of this relationship, in 
homological terms, which can be generalized to other situations. Roughly 
speaking, an algebra embedding A -» B is a localization if representations 
of A which extend to representations of B do so uniquely, and if the homo-
logical relations between representations of B (B-modules) are indepen­
dent of whether the modules are considered ,4-modules or B-modules 
(cf. [11]). Here we are referring to a version of homological algebra 
developed for topological algebras (cf. [10]). 

The idea, then, is to begin with a given "base" algebra A and study its 
family of "satellite" algebras JB, i.e., those algebras which arise from locali­
zations A -• B of A. Representations of A are then classified according to 
which localizations A -+ B have the property that the representation 
extends to B. 

For the base algebra Pn (the n-variable polynomial algebra), each of the 
natural embeddings Pn -• &{U\ for U a domain of holomorphy in Cn, 
is a localization (cf. [11, §6]). However, these are not the only localiza­
tions of PM; others include the natural map Pn -* C°°(V), for Fa domain in 
Rn, the map Pn -> S\Rn) of Pn into the algebra of compactly supported 
distributions determined by sending the generators of Pn to the partial 
derivatives of the Dirac <5, and embeddings of Pn in algebras of rational 
functions. 

Other base algebras whose localizations are discussed in [11] are the 
free algebra Fn on n-generators, the universal algebra of a Lie algebra, 
and the algebra of compactly supported distributions on a Lie group. 

Every n-tuple of operators determines a representation of the free 
algebra Fn on n-generators. Thus, it is the natural base algebra to use in 
the study of noncommuting rc-tuples. The condition that an algebra 
homomorphism Fn -» A be a localization is equivalent to the existence of 
certain operators A l 5 . . . , A„ from A to A (g) A that have properties 
reminiscent of partial derivatives (cf. [11, §6]). In this paper we shall 
restrict our attention to localizations of Fn. We shall use the existence of 



4 JOSEPH L. TAYLOR [January 

the operators Al9..., An to define the concept (rather than using the 
homological definition of [11]), and to develop several of its implications. 
There are remarkable similarities between localizations of Fn and ordinary 
algebras of functions of one or more variables; we shall stress these similari­
ties throughout the paper. 

In §1 we introduce localizations of Fn and discuss their elementary 
properties. In §2 we begin our discussion of the analytic functional cal­
culus problem, i.e., the problem of deciding for which localizations Fn -* A 
a given representation of Fn extends to a representation of A. This dis­
cussion is continued later, in §7, where we introduce a concept related 
to the resolvent set of ordinary spectral theory and outline a method of 
using this concept to attack the functional calculus problem; this method 
actually supplies a new proof of the ordinary single variable analytic 
functional calculus theorem. 

The class of all localizations of Fn will prove too large for our purposes. 
In fact, the localizations of Ft = P include many algebras other than the 
algebras (9(U). Thus, in §3 we introduce a class of localizations of Fn 

which we call free analytic algebras. These are localizations which are 
F-algebras such that the operators A!,...,A„ satisfy certain regularity 
properties relative to a sequence of seminorms defining the topology of 
the algebra. In one variable, the free analytic algebras are just the algebras 
0(U) for U a domain in C. 

An algebra homomorphism Fn -> A is determined by specifying the 
images zl9..., zn of the generators of Fn. If Fn -» A is a localization (or 
free analytic algebra) we call zl9 . . . , zn its generators. For a localization 
Fn -» A with generators zl9..., zn9 it turns out that each representation 
of A is determined by its values on zl9..., zn. Thus, we will commonly 
denote a representation of A on X by u -• u(a):A -> L(X), where a = 
(a!,..., an) is the image of the tuple (zl9..., zn); the a/s will be called the 
generators of the representation. Free analytic algebras A have a fairly 
surprising property: If u -• u(<x):A -+ L(X) is a representation of A on 
a Banach space X, then for all /? = (bl9..., bn) in a neighborhood of 
a = (al9...9an)e@nL(X)9 there is a representation u -• u(j8) of A on 
X with generators bl9...9bn; furthermore, u-+u(fi) varies analytically 
with ƒ? in this neighborhood (cf. §3). There are even analogues of Taylor's 
formula and power series expansions for free analytic algebras; these are 
developed in §4. 

Examples of free analytic algebras can be obtained by completing Fn in 
the topology generated by a sequence of power series type norms. The 
resulting algebras are the usual free analogues of power series algebras 
(cf. §3). However, these are not the only free analytic algebras. In §4 we 
describe an analogue of the implicit function theorem which specifies that 
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certain sets of relations in a free analytic algebra A generate ideals I 
such that A/I is a free analytic algebra on fewer generators. This allows 
one to construct free analytic algebras in which certain elements have 
inverses or certain equations have solutions. 

We conjecture that free analytic algebras must be Montel spaces (boun­
ded sets are precompact). This is certainly true in one variable. In §5 we 
present a discussion and partial result on the general problem. 

We end this introduction with an apology: Although we feel that the 
ideas presented here are promising, it is too early to predict whether or not 
a significant theory will result from further development. We know very 
little about the class of all free analytic algebras. As yet, we have no 
significant applications of what we do know. The techniques of §6 for 
attacking the functional calculus problem might prove to be practical, 
for n > 1, only in cases where the ensuing results were trivial anyway. 
Still, we feel quite strongly that free analytic algebras are the "correct" 
free analogues of algebras of analytic functions, and that this justifies 
pursuing the matter for awhile. 

1. Localizations of Fn. Throughout our discussions we shall be dealing 
with complete, Hausdorff, locally convex algebras over C, with identity, 
in which the multiplication is at least separately continuous. Rather than 
repeating these conditions ad infinitum, we shall refer to such an object 
simply as an algebra. A map A -+ B between two algebras will be called 
a homomorphism if it is an algebraic homomorphism and is continuous; 
if it maps the identity to the identity, it will be called unital. 

The theory of topological tensor products is a central tool for our work 
(cf. [2], [5], [6], [12]). Given two locally convex topological vector spaces 
(l.c.s.'s) X and Y, we denote the completed inductive tensor product of X 
and 7 by X (g) Y This is a complete Les. with a separately continuous 
bilinear map (x,y) -+ x ® y:X x Y -> X (g) Y such that any separately 
continuous bilinear map cp:X x Y-*Z, into a complete l.c.s. Z, deter­
mines a unique continuous linear map cp:X (g) Y-* Z with q>(x (g) y) 
= (p(x, y). Thus, the conditions we have imposed on an algebra A ensure 
that the multiplication map A x A -+ A determines a continuous linear 
map n:A (§) A -+ A with n(u (g) v) = uv. 

For F-spaces X and Y9 separately continuous linear maps X x Y -• Z 
are jointly continuous and the inductive tensor product X (g) Y agrees 
with the projective tensor product (characterized as above, but with 
jointly continuous bilinear maps) (cf. [5, III, §5]). Most of the algebras 
and modules we are interested in are F-spaces. 

For an algebra A, a left ,4-module will be a complete l.c.s. X together 
with an associative, separately continuous bilinear map (w, x)-~> ux: 
A x X -» X such that lx = x. This map induces a unique continuous 
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linear map A ® X -* X mapping u ® x to wx. If X is a left A-module, 
then the map u -* a(u) (a(u)x = ux) defines a unital algebra homo-
morphism a of ^ into L(X\ the algebra of continuous linear maps on X. 
This map is continuous if L(X) is given the topology of simple conver­
gence (strong operator topology). We call a the representation of A 
associated with the module. Sometimes we shall find it convenient to use 
the module terminology and notation, while other times it will be more 
convenient to use the representation point of view. 

Right v4-modules are defined in an analogous fashion. Here, the module 
operation (x, u) -• xw.X x A -^ X corresponds to an antihomomorphism 
a. A -• L(X) with a(u)x = xu. An A-bimodule is an l.c.s. with left and right 
A-moduler operations which commute with each other (u(xv) = (ux)v). 

If A is an algebra, then A® A has both an 4-bimodule structure and 
its own algebra structure. The bimodule operations we shall use are de­
fined by u(v ® w) = uv ® w and (v ® w)u = v ® wu. The algebra opera­
tion we use on A ® A will be denoted ( ƒ, g) -• ƒ * g and is defined by 
(u ® v) * (u' ® v') = uu' ® v'v (multiplication is reversed in the second 
factor). Note that, with this notation, the module operations can be written 
as uf = (u ® 1) * ƒ, fu = (1 ® u) * ƒ. 

We shall use the notation ou for the element u® 1 — 1 ® ue A ® A 
determined by ue A. 

DEFINITION 1.1. Let A be an algebra and F „ ^ A a unital homomorphism 
with zu..., zn the images of the generators. We shall say Fn -> A is a 
localization if there exist continuous linear maps At:A-*A®A (for 
i = 1,. . . , n) satisfying 

(a) Atzj = <5y(l ® 1), ƒ = 1,. . . , n; 
(b) At(uv) = uAt(v) + A£(w)f for w, v e A, i = 1,. . . , n\ 
(c) ou = (Axw) * Sz1 + • • • + (Anu) * (5z„. 
The above conditions should remind one of similar conditions satisfied 

by the partial differentiation operators d/dzt for holomorphic functions 
of several variables zu . . . , zn. However, this analogy cannot be carried 
too far. In fact, the operators At are more closely related to difference 
quotients than actual derivatives. 

As an example, we consider the algebra @{U) of holomorphic functions 
on a domain U a C. The natural embedding P -• &{U)is a, localization 
of f t = P. The algebra ®{U) ® (9{U) may be identified with the algebra 
0{U x U) of holomorphic functions of (z,w)eU x U (cf. [12, Theorem 
51.6]). The bimodule operations (w, ƒ) -> uf and (ƒ, u) ->fu are then given 
by (uf){z9 w) = u(z)f(z, w) and (fu)(z, w) = u(w)/(z, w). Also, for ue &(U) 
the element ou is given by 5w(z, w) = u(z) — u(w). Thus, it is apparent 
that (a), (b), and (c) of Definition 1.1 will be satisfied if we define A: (9(U) 
-> (9{U x U) by 
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Au(z,w) = (z-w)-\f(z)-f(w)). 

Of course, it is crucial that the derivative ƒ \z) provides a holomorphic 
extension of this difference quotient to all of U x U. Thus, the existence 
of A is related to the existence of the derivative in 0(U\ but A itself is the 
difference quotient. 

Throughout the remainder of this section we shall assume that Fn -> A 
is a localization of Fn with generators zl9..., z„. 

If a is a representation of A on X, then we shall write w(a), rather than 
oc(u), for the element in L{X) corresponding toue A. The reasons for this 
will soon become apparent. If a and ƒ? are representations on X and Y 
and if ceL(Y9X\ then the trilinear map (w, v, x) -• u(a)cu(Ji)x:A x A 
x X -• 7 is separately continuous and, hence, induces a continuous linear 
map c^iA <§) A ® X -* Y It follows that each ƒ e ,4 (g) A defines a linear 
map c - ƒ (a, /Q[c] : L(X, 7) - L(X, 7) by ƒ (a, /J)[c](x) = ^ ( ƒ ® x). If 
ƒ = u® v then ƒ (a, /?)[c] is just w(a)ct>(jS). If we denote z,(a) by a{ and 
zt(P) by bf, then ôzt((x, f})[c] = atc - cbt. Condition (c) of Definition 1.1 
then implies that 

(1.1) u(a)c — cu(ji) = AiW(a, J8)[a1c — cb{\ + • • • + A„w(a, f$)[anc — cbn] 

for all UE A. 

Equation (1.1) has several consequences. In the case X = Y and 
c = le L(X\ we conclude that two representations a and /? of A on X 
agree if they agree on the generators (at = bt). Hence, a representation a of 
A is uniquely determined by the tuple of operators ( a l 5 . . . , an) (at = z4(a)); 
for this reason, we will henceforth specify a representation by specifying 
the pair (X, a) with a = (a l 9 . . . ,a„). The operators al9 . . . ,aM will be 
called the generators of the representation. The image of ueA under 
the representation will be denoted w(a). 

A homomorphism c:Y-> X between two representations (X, a) and 
(X/?) is an element ceL(Y,X) such that u(oc)c = cw(j8) for edlueA (a left 
A-module homomorphism). It follows from (1.1) that c is a homomorphism 
if and only if a{c — cbt for i = 1 , . . . , n, where ai9...,an and b l 5 . . . , bn 

are the generators. For a single representation generated by a = (al9..., 
aM), this implies that each u(a) commutes with every operator in L(X) that 
commutes with each at. 

Now every tuple of operators a = ( a 1 , . . . , a „ ) o n a complete l.c.s. X 
determines a unique representation of Fn in which the generators are 
mapped to au . . . , an. In particular, the elements zu...9zneA determine 
the canonical embedding Fn -• A of Fn in A. With this in mind, the pre­
ceding discussion may be summarized as follows: 

PROPOSITION 1.1. Let Fn-+ Abe a localization ofFn. Then 
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(a) if(X, a) is a representation ofFn, there is at most one extension to a 
representation u -* w(a) of A; if such an extension exists, each w(a) commutes 
with every c e L(X) that commutes with the generators al9..., a„; 

(b) given two A-modules (X, a) and (Y,(l) and ceL(Y, X% c is an A-module 
homomorphism if and only if it is an Fn-module homomorphism. 

The properties expressed in Proposition 1.1 are not unique to locali­
zations of F„, In fact, we could draw the same conclusions if we simply 
assumed that for each u e A there were elements f u . . . , ƒ„ e A ® A (not 
necessarily unique) for which 

(1.2) &u = f1*ôz1 + -~+fn*ôzn. 

This is a property possessed by all factor algebras of Fn or any of its 
localizations. Such an algebra would be called a pseudo-quotient of Fn 

in the terminology of [11]. The fact that, for a localization, the //s are 
given by continuous linear maps At:A -• A (§) A with properties (a) and 
(b) of Definition 1.1 yields an additional property that is quite strong. 

Suppose that (X, a) and (Y, /}) are representations of A. For each n-tuple 
(cl9..., cn) in L(Y, X) we consider the representation of Fn on X © Y 
generated by the tuple y = (gu..., g„), where gt{x, y) = (atx + cty, bty). 
In other words, gt is represented by the matrix 

fit CA 

\0 &J' 
The maps Af give us an explicit way of extending this representation to a 
representation of A on X © Y We simply let u(y), for u e A, be the operator 
whose matrix is 

/«(a) lA iM(a,Mc,]\ 

\ 0 ' u(P) ) 

Then u(y)v(y), for u, v e A, is represented by 

/u(a)t>(a) «(a) Ç A,»(a, p)[ct] + £ AMa, 0[cJ»(/*)\ 

\ 0 ' H(0»OJ) / 

But it follows from (b) of Definition 1.1 that 

u(«) Y AMa, jS)[Cj] + X A(u(a, J?)[cjt)(/S) = £ Afut;(a, jS)[Ci]. 
i i i 

Hence, u(y)v(y) = wi;(y) and M ~> w(y) is a homomorphism. The continuity 
follows from the continuity of the Af's. Hence, u -» u(y) is a representation 
of A. That it extends the given representation of Fn follows from (a) of 
Definition 1.1. 
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The representation of Fn on X © Y defined above has the property 
that the injection X -> X © Y and projection X © Y-> Y are homomor-
phisms. That is, (X, a) is a submodule of (X © Y9 y) and (X j8) is a factor 
module. In general, if X and Y are modules over an algebra 4, then an 
,4-module structure on X © Y for which the canonical image of X in 
X © 7is a submodule and Yis the corresponding factor module is called 
an ,4-module extension of Y by X. Thus, we have proved that 

PROPOSITION 1.2. If Fn -^ Ais a localization and X and Y are A-modules, 
every Fn-module extension of Yby X is also an A-module extension. 

We have already pointed out that the algebras &(U) are localizations 
of Fx = P. Are there others? A moment's reflection should convince the 
reader that the algebra C°°(/) (/ an open interval on the line) is a localiza­
tion with generator the identity function. Here again, the difference 
quotient provides the map A. It turns out that the algebra S\R) of com­
pactly supported distributions is a localization with the derivative of the 
Dirac delta as generator (cf. [11, §3]). Algebras of rational functions are 
also localizations (cf. [11, §3]). 

Suppose A is any localization of P and let Q be the set of those X e C 
which generate one-dimensional representations u -• u{X) of A; that is, 
X e Q if X is the image of the generator z of A under some continuous 
complex homomorphism of A. Then each us A determines a function 
X -> u(X) on Q and each ƒ e A® A determines a function (X, co) -+ f(X9 co) 
on Q x Q. Let Â denote the resulting algebra of functions on Q. Note that, 
for ƒ e A (§) A, ƒ (X, co) is in A as a function of X(œ) for each fixed coeQ (XeQ). 
Furthermore, we have 

u(X) — u(co) = (X — œ)Au(X, co) 

from (1.1). It follows that if the elements of A are bounded on a subset 
S c Q , they are also continuous on S and differentiable in the sense that 
(X — co)~1(u(X) — U(CD)) converges as X -• co within S. In particular, each 
X -* u(X) must be holomorphic on any open set S with this property. 
One way of insuring that there are large subsets of Q on which functions 
in A are bounded is to demand that A be an F-algebra (cf. [4]). This insures 
that Q is the union of a sequence of compact sets on which each X -> u{X) 
is bounded. 

The mapping A -> Â defined above need not be one to one for a locali­
zation A of P. An example is the algebra of all convergent power series. 
Here Q is the single point {0}. 

There are probably too many pathological examples of localizations 
of P for a complete characterization to be practical. However, as we shall 
see in §3, by insisting that A be an F-algebra and that A satisfy a certain 
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regularity condition relative to a family of seminomas, we eliminate all 
examples except the algebras &(U). 

2. Extending representations of Fn. Given a unital algebra homomor-
phism Fw -• A and a representation F„ -• L(X) of F„, we consider the 
problem of extending the representation to a representation A -• L(A) of 
A for which the diagram 

V7 
L(X) 

commutes. Since the map Fn -* A is determined by specifying an n-tuple 
(zl9..., zn) in v4 and Fn -> L(X) is determined by specifying an n-tuple 
(al9...,an) in L(X), the problem is to find a representation A -» L(X) 
which sends zf to af for i = 1,. . . , n. We shall develop a sufficient condition 
that this be possible and then show that it is both necessary and sufficient 
if A is a localization of Fn. 

It will be convenient in this section to use module notation and ter­
minology. We consider Fn (g) Fn to be an algebra under the operation 
{u (g) v) * {u' (g) v') = uu' ® v'v. If M is a right F„-module and X a left 
F„-module, then we consider M (g) X to be a right FM <g) F„-module with 
operation determined by (m (g) x) * (u (g) u) = mw (g) #x. With £w = w (g) 1 
- 1 (g) M for w G F„, we define a map 0 : 0 " (M ® X) -• M (g) X by 

(2.i) e(A e • • • e ƒ„) = /i * &! + • • • + ƒ„ * özn, 
where z l 5 . . . , z„ are the generators of Fn. 

We shall be dealing with right modules with a distinguished element 
eeM. Such a module will be called an augmented right F„-module. For 
an augmented right F„-module M and a left F„-module X we may define 
a map ë:X -• M (g) X by ë(x) = e (g) x and a map ^f : 0" (M ® X) © X 
-• M (g) X by 

(2.2) ^ ( / i © • • • e ƒ„ e x) = Ö(A e • • • e / j + ë(x). 
DEFINITION 2.1. We shall say that the augmented right FM-module M 

dominates the left Fn-module X and write M » X provided the map J^ 
of (2.2) is invertible. 

The significance of the condition M » X is as follows: If Jf is invertible 
then there is a surjective map cp =no ^T _ 1 :M(g)X^X, where n pro­
jects 0 M (M (g) X) © X onto X. The kernel of (p is precisely the image of 
0: 0 n ( M <g) X) -» M (g) X. In fact, the existence of JV"1 is equivalent 
to the existence of a map cp : M (g) X -> X for which the sequence 

(2.3) 0 -> 0M(M <g>X)AM(g)X^X->0 


