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FUNCTIONS OF SEVERAL NONCOMMUTING VARIABLES1 

BY JOSEPH L. TAYLOR2 

The notions of nonsingularity, resolvent set, and spectrum, and the 
corresponding analytic functional calculus for n-tuples of elements of a 
commutative Banach algebra provide some of the deepest and most 
potent tools of modern analysis. A point of view one can adopt regarding 
this theory is as follows: The class of algebras (9(U)9 for U a domain in 
Cn

9 provides a relatively small, well-understood, and nicely behaved class 
of topological algebras with distinguished tuples (zl9..., zn) of elements; 
furthermore, spectral theory and the Shilov-Arens-Calderón Theorem 
(cf. [17]) give precise information regarding which algebras &(U) can be 
mapped into a given commutative Banach algebra (or F-algebra) by a 
continuous homomorphism carrying (zl9...9zn) onto a specified tuple 
of elements. Thus, the algebras &(U) and tuples (zl9...9zn) provide a 
tractable class of models for the behavior of n-tuples of elements of a 
commutative topological algebra. 

In [7] and [8] we showed how to extend spectral theory and the analytic 
functional calculus in a well-defined manner to the study of commuting 
n-tuples of operators on a Banach space. From this point of view, the 
pairs (0(U)9 (zu...9zn)) provide models for the behavior of n-tuples of 
operators. 

It must occur to nearly every analyst who encounters joint spectral 
theory to wonder whether or not there are useful notions of nonsingularity 
and spectrum for tuples in a noncommutative algebra or for noncommu-
ting tuples of operators. From the point of view we have adopted regarding 
spectral theory, a more meaningful question is the following: Is there a 
reasonably small, well behaved class of pairs (A9(zl9...9zn))9 consisting 
of an algebra A and an n-tuple (zl9..., zn) of elements of A9 that will serve 
as models for the behavior of fairly general (noncommutative) n-tuples 
of algebra elements or n-tuples of operators? Given such a class, the 
analogue of spectral theory and the functional calculus would consist of 
techniques for deciding which models (A9(zl9...9 zn)) can be mapped into 
a given algebra n-tuple pair (B9(al9...9 an))9 or equivalently, which models 
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(A9(zl9. ..9zn)) have representations on a given space X for which the 
elements zl9..., zn act as given operators al9...9ane L(X). 

The above question has intrigued us for some time. Our definition in 
[7] of joint spectrum for commuting n-tuples of operators can be phrased 
in terms of concepts from homological algebra which make perfectly 
good sense in noncommutative situations (cf. [9]); that is, our version of 
commutative joint spectral theory can be viewed as the study of certain 
homological relations between modules over the n-variable polynomial 
algebra Pn ; and these are relations which also make sense for modules over 
more general (even noncommutative) algebras. This suggested that 
homological algebra might provide the key to defining and studying a 
class of models for the noncommutative situation. The pursuit of this 
idea led to a paper [10] on homology and cohomology for topological 
algebras, and another [11] applying this work to obtain a version of 
spectral theory which makes sense in a wide variety of situations (both 
commutative and noncommutative). Here we shall review those portions 
of this latter paper (with the homological algebra suppressed) that relate 
directly to the study of noncommutative w-tuples of operators, and also 
present some more recent results on the subject. 

In order to develop a class of models (A9(zl9...9 zn)) for the behavior 
of noncommutative rc-tuples, we begin with the free algebra Fn on n-
generators zl9..., z„ and identify certain embeddings Fn -> A of Fn in 
"satellite" algebras A. These algebras are to be in some sense algebras of 
functions of the free variables zl9..., zn—just as the algebras (9{U) are 
algebras of functions of the generators of the polynomial algebra Pn. 

A brief discussion of the single variable functional calculus may be 
helpful in understanding what we shall be doing. Thus, let a e L(X) be a 
bounded linear operator on the Banach space X. Then a determines an 
algebra homomorphism p -• p(a) from the polynomial algebra P into 
the algebra L(X)9 that is, a representation of P on X (or a P-module 
structure on X). Now the algebra P is canonically embedded in each of 
the algebras &{U) (the algebra of all holomorphic functions on U) for U 
a domain in C. Hence, we can ask the question: For which algebras &(U) 
does the representation of P on X determined by a extend to a (continuous) 
representation of (9(U) on XI Of course, the answer is supplied by the 
analytic functional calculus: The representation extends to 0{U) if and 
only if U contains the spectrum of the operator a; furthermore, the exten
sion is unique if it exists. 

The fact that the above question has such a nice answer is no accident. 
It is due to the fact that there is a very special relationship between the 
algebra P and the algebras &( U). If A is any topological algebra and cp a 
representation of A on an l.c.s. X9 one could ask the question: For which 
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embeddings, A -» £, of A in other topological algebras, £, is it true that 
the representation extends uniquely to a representation of Bl One would 
not, however, expect such a general question to have a reasonable answer. 
For a given A, however, it might be possible to identify a class of "satellite" 
algebras B containing A for which the question is tractable for a sufficiently 
restricted class of representations <p. This is certainly the case for P; the 
class of "satellite" algebras is the class of algebras (9{U)\ for these, and the 
representations of P on Banach spaces, the functional calculus problem 
has a nice answer. 

What is special about the relationship between P and the algebras 
(9(U)1 In some sense the elements of (9{U) are functions of the generator 
of P. However, there is a more precise statement of this relationship, in 
homological terms, which can be generalized to other situations. Roughly 
speaking, an algebra embedding A -» B is a localization if representations 
of A which extend to representations of B do so uniquely, and if the homo-
logical relations between representations of B (B-modules) are indepen
dent of whether the modules are considered ,4-modules or B-modules 
(cf. [11]). Here we are referring to a version of homological algebra 
developed for topological algebras (cf. [10]). 

The idea, then, is to begin with a given "base" algebra A and study its 
family of "satellite" algebras JB, i.e., those algebras which arise from locali
zations A -• B of A. Representations of A are then classified according to 
which localizations A -+ B have the property that the representation 
extends to B. 

For the base algebra Pn (the n-variable polynomial algebra), each of the 
natural embeddings Pn -• &{U\ for U a domain of holomorphy in Cn, 
is a localization (cf. [11, §6]). However, these are not the only localiza
tions of PM; others include the natural map Pn -* C°°(V), for Fa domain in 
Rn, the map Pn -> S\Rn) of Pn into the algebra of compactly supported 
distributions determined by sending the generators of Pn to the partial 
derivatives of the Dirac <5, and embeddings of Pn in algebras of rational 
functions. 

Other base algebras whose localizations are discussed in [11] are the 
free algebra Fn on n-generators, the universal algebra of a Lie algebra, 
and the algebra of compactly supported distributions on a Lie group. 

Every n-tuple of operators determines a representation of the free 
algebra Fn on n-generators. Thus, it is the natural base algebra to use in 
the study of noncommuting rc-tuples. The condition that an algebra 
homomorphism Fn -» A be a localization is equivalent to the existence of 
certain operators A l 5 . . . , A„ from A to A (g) A that have properties 
reminiscent of partial derivatives (cf. [11, §6]). In this paper we shall 
restrict our attention to localizations of Fn. We shall use the existence of 
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the operators Al9..., An to define the concept (rather than using the 
homological definition of [11]), and to develop several of its implications. 
There are remarkable similarities between localizations of Fn and ordinary 
algebras of functions of one or more variables; we shall stress these similari
ties throughout the paper. 

In §1 we introduce localizations of Fn and discuss their elementary 
properties. In §2 we begin our discussion of the analytic functional cal
culus problem, i.e., the problem of deciding for which localizations Fn -* A 
a given representation of Fn extends to a representation of A. This dis
cussion is continued later, in §7, where we introduce a concept related 
to the resolvent set of ordinary spectral theory and outline a method of 
using this concept to attack the functional calculus problem; this method 
actually supplies a new proof of the ordinary single variable analytic 
functional calculus theorem. 

The class of all localizations of Fn will prove too large for our purposes. 
In fact, the localizations of Ft = P include many algebras other than the 
algebras (9(U). Thus, in §3 we introduce a class of localizations of Fn 

which we call free analytic algebras. These are localizations which are 
F-algebras such that the operators A!,...,A„ satisfy certain regularity 
properties relative to a sequence of seminorms defining the topology of 
the algebra. In one variable, the free analytic algebras are just the algebras 
0(U) for U a domain in C. 

An algebra homomorphism Fn -> A is determined by specifying the 
images zl9..., zn of the generators of Fn. If Fn -» A is a localization (or 
free analytic algebra) we call zl9 . . . , zn its generators. For a localization 
Fn -» A with generators zl9..., zn9 it turns out that each representation 
of A is determined by its values on zl9..., zn. Thus, we will commonly 
denote a representation of A on X by u -• u(a):A -> L(X), where a = 
(a!,..., an) is the image of the tuple (zl9..., zn); the a/s will be called the 
generators of the representation. Free analytic algebras A have a fairly 
surprising property: If u -• u(<x):A -+ L(X) is a representation of A on 
a Banach space X, then for all /? = (bl9..., bn) in a neighborhood of 
a = (al9...9an)e@nL(X)9 there is a representation u -• u(j8) of A on 
X with generators bl9...9bn; furthermore, u-+u(fi) varies analytically 
with ƒ? in this neighborhood (cf. §3). There are even analogues of Taylor's 
formula and power series expansions for free analytic algebras; these are 
developed in §4. 

Examples of free analytic algebras can be obtained by completing Fn in 
the topology generated by a sequence of power series type norms. The 
resulting algebras are the usual free analogues of power series algebras 
(cf. §3). However, these are not the only free analytic algebras. In §4 we 
describe an analogue of the implicit function theorem which specifies that 
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certain sets of relations in a free analytic algebra A generate ideals I 
such that A/I is a free analytic algebra on fewer generators. This allows 
one to construct free analytic algebras in which certain elements have 
inverses or certain equations have solutions. 

We conjecture that free analytic algebras must be Montel spaces (boun
ded sets are precompact). This is certainly true in one variable. In §5 we 
present a discussion and partial result on the general problem. 

We end this introduction with an apology: Although we feel that the 
ideas presented here are promising, it is too early to predict whether or not 
a significant theory will result from further development. We know very 
little about the class of all free analytic algebras. As yet, we have no 
significant applications of what we do know. The techniques of §6 for 
attacking the functional calculus problem might prove to be practical, 
for n > 1, only in cases where the ensuing results were trivial anyway. 
Still, we feel quite strongly that free analytic algebras are the "correct" 
free analogues of algebras of analytic functions, and that this justifies 
pursuing the matter for awhile. 

1. Localizations of Fn. Throughout our discussions we shall be dealing 
with complete, Hausdorff, locally convex algebras over C, with identity, 
in which the multiplication is at least separately continuous. Rather than 
repeating these conditions ad infinitum, we shall refer to such an object 
simply as an algebra. A map A -+ B between two algebras will be called 
a homomorphism if it is an algebraic homomorphism and is continuous; 
if it maps the identity to the identity, it will be called unital. 

The theory of topological tensor products is a central tool for our work 
(cf. [2], [5], [6], [12]). Given two locally convex topological vector spaces 
(l.c.s.'s) X and Y, we denote the completed inductive tensor product of X 
and 7 by X (g) Y This is a complete Les. with a separately continuous 
bilinear map (x,y) -+ x ® y:X x Y -> X (g) Y such that any separately 
continuous bilinear map cp:X x Y-*Z, into a complete l.c.s. Z, deter
mines a unique continuous linear map cp:X (g) Y-* Z with q>(x (g) y) 
= (p(x, y). Thus, the conditions we have imposed on an algebra A ensure 
that the multiplication map A x A -+ A determines a continuous linear 
map n:A (§) A -+ A with n(u (g) v) = uv. 

For F-spaces X and Y9 separately continuous linear maps X x Y -• Z 
are jointly continuous and the inductive tensor product X (g) Y agrees 
with the projective tensor product (characterized as above, but with 
jointly continuous bilinear maps) (cf. [5, III, §5]). Most of the algebras 
and modules we are interested in are F-spaces. 

For an algebra A, a left ,4-module will be a complete l.c.s. X together 
with an associative, separately continuous bilinear map (w, x)-~> ux: 
A x X -» X such that lx = x. This map induces a unique continuous 
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linear map A ® X -* X mapping u ® x to wx. If X is a left A-module, 
then the map u -* a(u) (a(u)x = ux) defines a unital algebra homo-
morphism a of ^ into L(X\ the algebra of continuous linear maps on X. 
This map is continuous if L(X) is given the topology of simple conver
gence (strong operator topology). We call a the representation of A 
associated with the module. Sometimes we shall find it convenient to use 
the module terminology and notation, while other times it will be more 
convenient to use the representation point of view. 

Right v4-modules are defined in an analogous fashion. Here, the module 
operation (x, u) -• xw.X x A -^ X corresponds to an antihomomorphism 
a. A -• L(X) with a(u)x = xu. An A-bimodule is an l.c.s. with left and right 
A-moduler operations which commute with each other (u(xv) = (ux)v). 

If A is an algebra, then A® A has both an 4-bimodule structure and 
its own algebra structure. The bimodule operations we shall use are de
fined by u(v ® w) = uv ® w and (v ® w)u = v ® wu. The algebra opera
tion we use on A ® A will be denoted ( ƒ, g) -• ƒ * g and is defined by 
(u ® v) * (u' ® v') = uu' ® v'v (multiplication is reversed in the second 
factor). Note that, with this notation, the module operations can be written 
as uf = (u ® 1) * ƒ, fu = (1 ® u) * ƒ. 

We shall use the notation ou for the element u® 1 — 1 ® ue A ® A 
determined by ue A. 

DEFINITION 1.1. Let A be an algebra and F „ ^ A a unital homomorphism 
with zu..., zn the images of the generators. We shall say Fn -> A is a 
localization if there exist continuous linear maps At:A-*A®A (for 
i = 1,. . . , n) satisfying 

(a) Atzj = <5y(l ® 1), ƒ = 1,. . . , n; 
(b) At(uv) = uAt(v) + A£(w)f for w, v e A, i = 1,. . . , n\ 
(c) ou = (Axw) * Sz1 + • • • + (Anu) * (5z„. 
The above conditions should remind one of similar conditions satisfied 

by the partial differentiation operators d/dzt for holomorphic functions 
of several variables zu . . . , zn. However, this analogy cannot be carried 
too far. In fact, the operators At are more closely related to difference 
quotients than actual derivatives. 

As an example, we consider the algebra @{U) of holomorphic functions 
on a domain U a C. The natural embedding P -• &{U)is a, localization 
of f t = P. The algebra ®{U) ® (9{U) may be identified with the algebra 
0{U x U) of holomorphic functions of (z,w)eU x U (cf. [12, Theorem 
51.6]). The bimodule operations (w, ƒ) -> uf and (ƒ, u) ->fu are then given 
by (uf){z9 w) = u(z)f(z, w) and (fu)(z, w) = u(w)/(z, w). Also, for ue &(U) 
the element ou is given by 5w(z, w) = u(z) — u(w). Thus, it is apparent 
that (a), (b), and (c) of Definition 1.1 will be satisfied if we define A: (9(U) 
-> (9{U x U) by 
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Au(z,w) = (z-w)-\f(z)-f(w)). 

Of course, it is crucial that the derivative ƒ \z) provides a holomorphic 
extension of this difference quotient to all of U x U. Thus, the existence 
of A is related to the existence of the derivative in 0(U\ but A itself is the 
difference quotient. 

Throughout the remainder of this section we shall assume that Fn -> A 
is a localization of Fn with generators zl9..., z„. 

If a is a representation of A on X, then we shall write w(a), rather than 
oc(u), for the element in L{X) corresponding toue A. The reasons for this 
will soon become apparent. If a and ƒ? are representations on X and Y 
and if ceL(Y9X\ then the trilinear map (w, v, x) -• u(a)cu(Ji)x:A x A 
x X -• 7 is separately continuous and, hence, induces a continuous linear 
map c^iA <§) A ® X -* Y It follows that each ƒ e ,4 (g) A defines a linear 
map c - ƒ (a, /Q[c] : L(X, 7) - L(X, 7) by ƒ (a, /J)[c](x) = ^ ( ƒ ® x). If 
ƒ = u® v then ƒ (a, /?)[c] is just w(a)ct>(jS). If we denote z,(a) by a{ and 
zt(P) by bf, then ôzt((x, f})[c] = atc - cbt. Condition (c) of Definition 1.1 
then implies that 

(1.1) u(a)c — cu(ji) = AiW(a, J8)[a1c — cb{\ + • • • + A„w(a, f$)[anc — cbn] 

for all UE A. 

Equation (1.1) has several consequences. In the case X = Y and 
c = le L(X\ we conclude that two representations a and /? of A on X 
agree if they agree on the generators (at = bt). Hence, a representation a of 
A is uniquely determined by the tuple of operators ( a l 5 . . . , an) (at = z4(a)); 
for this reason, we will henceforth specify a representation by specifying 
the pair (X, a) with a = (a l 9 . . . ,a„). The operators al9 . . . ,aM will be 
called the generators of the representation. The image of ueA under 
the representation will be denoted w(a). 

A homomorphism c:Y-> X between two representations (X, a) and 
(X/?) is an element ceL(Y,X) such that u(oc)c = cw(j8) for edlueA (a left 
A-module homomorphism). It follows from (1.1) that c is a homomorphism 
if and only if a{c — cbt for i = 1 , . . . , n, where ai9...,an and b l 5 . . . , bn 

are the generators. For a single representation generated by a = (al9..., 
aM), this implies that each u(a) commutes with every operator in L(X) that 
commutes with each at. 

Now every tuple of operators a = ( a 1 , . . . , a „ ) o n a complete l.c.s. X 
determines a unique representation of Fn in which the generators are 
mapped to au . . . , an. In particular, the elements zu...9zneA determine 
the canonical embedding Fn -• A of Fn in A. With this in mind, the pre
ceding discussion may be summarized as follows: 

PROPOSITION 1.1. Let Fn-+ Abe a localization ofFn. Then 
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(a) if(X, a) is a representation ofFn, there is at most one extension to a 
representation u -* w(a) of A; if such an extension exists, each w(a) commutes 
with every c e L(X) that commutes with the generators al9..., a„; 

(b) given two A-modules (X, a) and (Y,(l) and ceL(Y, X% c is an A-module 
homomorphism if and only if it is an Fn-module homomorphism. 

The properties expressed in Proposition 1.1 are not unique to locali
zations of F„, In fact, we could draw the same conclusions if we simply 
assumed that for each u e A there were elements f u . . . , ƒ„ e A ® A (not 
necessarily unique) for which 

(1.2) &u = f1*ôz1 + -~+fn*ôzn. 

This is a property possessed by all factor algebras of Fn or any of its 
localizations. Such an algebra would be called a pseudo-quotient of Fn 

in the terminology of [11]. The fact that, for a localization, the //s are 
given by continuous linear maps At:A -• A (§) A with properties (a) and 
(b) of Definition 1.1 yields an additional property that is quite strong. 

Suppose that (X, a) and (Y, /}) are representations of A. For each n-tuple 
(cl9..., cn) in L(Y, X) we consider the representation of Fn on X © Y 
generated by the tuple y = (gu..., g„), where gt{x, y) = (atx + cty, bty). 
In other words, gt is represented by the matrix 

fit CA 

\0 &J' 
The maps Af give us an explicit way of extending this representation to a 
representation of A on X © Y We simply let u(y), for u e A, be the operator 
whose matrix is 

/«(a) lA iM(a,Mc,]\ 

\ 0 ' u(P) ) 

Then u(y)v(y), for u, v e A, is represented by 

/u(a)t>(a) «(a) Ç A,»(a, p)[ct] + £ AMa, 0[cJ»(/*)\ 

\ 0 ' H(0»OJ) / 

But it follows from (b) of Definition 1.1 that 

u(«) Y AMa, jS)[Cj] + X A(u(a, J?)[cjt)(/S) = £ Afut;(a, jS)[Ci]. 
i i i 

Hence, u(y)v(y) = wi;(y) and M ~> w(y) is a homomorphism. The continuity 
follows from the continuity of the Af's. Hence, u -» u(y) is a representation 
of A. That it extends the given representation of Fn follows from (a) of 
Definition 1.1. 
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The representation of Fn on X © Y defined above has the property 
that the injection X -> X © Y and projection X © Y-> Y are homomor-
phisms. That is, (X, a) is a submodule of (X © Y9 y) and (X j8) is a factor 
module. In general, if X and Y are modules over an algebra 4, then an 
,4-module structure on X © Y for which the canonical image of X in 
X © 7is a submodule and Yis the corresponding factor module is called 
an ,4-module extension of Y by X. Thus, we have proved that 

PROPOSITION 1.2. If Fn -^ Ais a localization and X and Y are A-modules, 
every Fn-module extension of Yby X is also an A-module extension. 

We have already pointed out that the algebras &(U) are localizations 
of Fx = P. Are there others? A moment's reflection should convince the 
reader that the algebra C°°(/) (/ an open interval on the line) is a localiza
tion with generator the identity function. Here again, the difference 
quotient provides the map A. It turns out that the algebra S\R) of com
pactly supported distributions is a localization with the derivative of the 
Dirac delta as generator (cf. [11, §3]). Algebras of rational functions are 
also localizations (cf. [11, §3]). 

Suppose A is any localization of P and let Q be the set of those X e C 
which generate one-dimensional representations u -• u{X) of A; that is, 
X e Q if X is the image of the generator z of A under some continuous 
complex homomorphism of A. Then each us A determines a function 
X -> u(X) on Q and each ƒ e A® A determines a function (X, co) -+ f(X9 co) 
on Q x Q. Let Â denote the resulting algebra of functions on Q. Note that, 
for ƒ e A (§) A, ƒ (X, co) is in A as a function of X(œ) for each fixed coeQ (XeQ). 
Furthermore, we have 

u(X) — u(co) = (X — œ)Au(X, co) 

from (1.1). It follows that if the elements of A are bounded on a subset 
S c Q , they are also continuous on S and differentiable in the sense that 
(X — co)~1(u(X) — U(CD)) converges as X -• co within S. In particular, each 
X -* u(X) must be holomorphic on any open set S with this property. 
One way of insuring that there are large subsets of Q on which functions 
in A are bounded is to demand that A be an F-algebra (cf. [4]). This insures 
that Q is the union of a sequence of compact sets on which each X -> u{X) 
is bounded. 

The mapping A -> Â defined above need not be one to one for a locali
zation A of P. An example is the algebra of all convergent power series. 
Here Q is the single point {0}. 

There are probably too many pathological examples of localizations 
of P for a complete characterization to be practical. However, as we shall 
see in §3, by insisting that A be an F-algebra and that A satisfy a certain 
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regularity condition relative to a family of seminomas, we eliminate all 
examples except the algebras &(U). 

2. Extending representations of Fn. Given a unital algebra homomor-
phism Fw -• A and a representation F„ -• L(X) of F„, we consider the 
problem of extending the representation to a representation A -• L(A) of 
A for which the diagram 

V7 
L(X) 

commutes. Since the map Fn -* A is determined by specifying an n-tuple 
(zl9..., zn) in v4 and Fn -> L(X) is determined by specifying an n-tuple 
(al9...,an) in L(X), the problem is to find a representation A -» L(X) 
which sends zf to af for i = 1,. . . , n. We shall develop a sufficient condition 
that this be possible and then show that it is both necessary and sufficient 
if A is a localization of Fn. 

It will be convenient in this section to use module notation and ter
minology. We consider Fn (g) Fn to be an algebra under the operation 
{u (g) v) * {u' (g) v') = uu' ® v'v. If M is a right F„-module and X a left 
F„-module, then we consider M (g) X to be a right FM <g) F„-module with 
operation determined by (m (g) x) * (u (g) u) = mw (g) #x. With £w = w (g) 1 
- 1 (g) M for w G F„, we define a map 0 : 0 " (M ® X) -• M (g) X by 

(2.i) e(A e • • • e ƒ„) = /i * &! + • • • + ƒ„ * özn, 
where z l 5 . . . , z„ are the generators of Fn. 

We shall be dealing with right modules with a distinguished element 
eeM. Such a module will be called an augmented right F„-module. For 
an augmented right F„-module M and a left F„-module X we may define 
a map ë:X -• M (g) X by ë(x) = e (g) x and a map ^f : 0" (M ® X) © X 
-• M (g) X by 

(2.2) ^ ( / i © • • • e ƒ„ e x) = Ö(A e • • • e / j + ë(x). 
DEFINITION 2.1. We shall say that the augmented right FM-module M 

dominates the left Fn-module X and write M » X provided the map J^ 
of (2.2) is invertible. 

The significance of the condition M » X is as follows: If Jf is invertible 
then there is a surjective map cp =no ^T _ 1 :M(g)X^X, where n pro
jects 0 M (M (g) X) © X onto X. The kernel of (p is precisely the image of 
0: 0 n ( M <g) X) -» M (g) X. In fact, the existence of JV"1 is equivalent 
to the existence of a map cp : M (g) X -> X for which the sequence 

(2.3) 0 -> 0M(M <g>X)AM(g)X^X->0 
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is exact and split in the sense that 9 has a left inverse and cp a right inverse. 
Now if Fn -• B is a unital algebra homomorphism, then we may con

sider B to be an augmented right F„-module where the distinguished 
element e is the identity 1. However, B ® X, for any X, is a left B-module 
under the operation determined by u(v ® x) = uv ® x. If we choose 
M = B in (2.3), then it is easy to see that 9 is a left B-module homomor
phism. It follows that cp identifies X with a factor module of B ® X. The 
space X is already a left FM-module, but it is easy to see that cp is an Fn-
module homomorphism. Hence, the B-module structure induced on X 
by cp extends the given F„-module structure. Thus, we have 

PROPOSITION 2.1. If B » X then X has a B-module structure which ex
tends its Fn-module structure. 

Now suppose Fn -+ A is a localization and X is a left A-module. We 
define a map X\ A ® X -> 0 " {A © X) © X by 

X(u ® x) = (A^x © • • • © (Anu)x © ux, 

where (Afw)x refers to the image of Atu e A® A under the map v ® w 
-> t; ® wx:A ® A-+ A® X. Note that 

JV° X(u ® x) = [(AJM) * <5Z! + • • • 4- (Aww) * ôzn]x + 1 ® ux 

= (u ® 1 — 1 ® u)x + 1 ® ux = u ® x, 

and 

A o ^[(t*! ® Xt) © • • • © (Un ® Xn) © X] 

= AY, (UiZi ® xi — ui® zixi) + 1 (X) X 

([A/IJZJXJ + u^AjzJXi - [A^wJZfX) © x 

= yZ(&ui®xi) ©x. 

Hence, A = J^'1 and we have proved 

PROPOSITION 2.2. If Fn-> A is a localization, then a left Fn-module is 
also a left A-module if and only if A » X. In this case, the unique A-module 
structure on X {extending the given Fn-module structure) is explicitly deter
mined by the condition that the map cp of (2.3) be an A-module homomor
phism. 

In the next section we will need to consider the relation B » C for 
algebras B and C which are completions of A in stronger topologies. More 

j L i 
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generally, suppose Fn -> A is a localization and a:,4 -» J3, /?:,4 -> C are 
unital algebra homomorphisms with a having dense range. As before, we 
consider B to be an augmented right F„-module and C a left F„-module. 
If B » C then the map cp.B <g) C -> C of (2.3) induces an F„-module 
homomorphism y:B -* C, where y(w) = <p(w (g) 1). However, J5 and C are 
also left ^-modules via the maps a and /? and so, by Proposition 1.1, y is 
also an A-module homomorphism. The fact that A embeds densely in 
B then implies that y is in fact an algebra homomorphism from B to C 
for which the diagram 

B-L+C 

is commutative. Thus, B»C implies that p:A^C factors through 
a:A -• £. We can conclude even more, however: We note that if ueB 
then u ® 1 - 1 ® y(w)e £ (g) C is in the kernel of cp:£ (g) C -• C. Since 
the map 6 of (2.3) has a left inverse, 0" *, and (2.3) is exact, we may define 
a map S:£ -• 0 " ( £ <§> C) by 

5(H) = ö_1(w(g) 1 - 1 ®y(w)). 

If A: A -• 0 " (A (g) A) is the map whose coordinate maps are our A/s, 
then it is easy to see that the diagram 

n 

X ^ 0 (A (g> A) 
la® P 

1 n I 
B^®(B®C) 

is commutative. Hence, A provides an extension of A to a map from B 
t o 0 " ( £ ® C ) . 

Conversely, if j8 factors through a and A extends to a map A:£-> 
0 " (£ (g) C), then an argument like the one preceding Proposition 2.2 
shows how to construct an inverse for Jf. Hence, 

PROPOSITION 2.3. Let Fn-+ A be a localization and a: A -• £, fi\A -» C 
be unital algebra homomorphisms, with a having dense range. Then the 
relation B » C holds if and only if ft factors through a and A: A -• 
0"O4 (g) A) extends continuously to a map A:B -• 0 W (£ (g) C). 

The existence of the mapÂ :B -* 0 W (£ (g) C) can also be used to con
struct an inverse for Jf for the pair £, X, where X is any left C-module. 
Since B » C is equivalent to the existence of such a Â, we have 

PROPOSITION 2.4. For the localization Fn -> A, let a: A -» £ and jSM -• C 
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be as in Proposition 2.3. Then B » C implies B » Xfor any left C-module X. 

A major reason that the relation " » " is useful is that it satisfies a rather 
strong stability property. Suppose M is an augmented right FM-module 
which happens to be a Banach space, and X is any Banach space. If 
/? = (fel5..,, bn) is a tuple of operators on X, we denote the left F„-module 
in which the generators of Fn act as the operators bl9..., bn by (X, ƒ?). 
For this situation, the map Jf of (2.2) is a bounded linear map between 
two Banach spaces. Furthermore, as the b/s vary (varying the module 
structure on X), the map Jf varies in a continuous fashion. It follows that 
if Jf is invertible for one tuple a it is invertible for all tuples /? in a (norm) 
neighborhood of a and JV"1 (and, hence <p) varies continuously with jS. 
It follows that 

PROPOSITION 2.5. If M is an augmented right Fn-module, M and X 
Banach spaces, and (X, /?) is the left Fn-module determined by a tuple 
p = (bl9...,bn) of elements ofL(X\ then the set offt for which M » (X, /}) 
is open in the norm topology of@nL(X) and the induced map cp.M ® X 
-• X varies continuously with /? on this set. 

In the particular case where M is a Banach algebra B with an embedding 
Fn -» B, the continuity of cp as a function of /? implies that the B-module 
structure induced on (X, J?) (as in Proposition 2.1) varies continuously 
with /?. That is, the representation u -• u(P):B -• L(X) induced by 
(p(u(P)(x) = (p{u ® x)) varies continuously with j8 in the norm topology 
ofL(J5,L(X)). 

In §7 we shall continue the study of the relation " » " and its applica
tions to the functional calculus problem. There we shall introduce a 
complementary relation " 1 " which is related to the resolvent set of ordi
nary spectral theory. 

3. Free analytic algebras. The stability property of the relation " » " 
expressed in Proposition 2.5 provides the key to strengthening the con
cept of localization so as to obtain a class of algebras which are generaliza
tions to the case of several noncommuting variables of the algebras (9(U). 
An important property of an algebra (9(U) is the following: If P -• L(X) 
is a representation of the polynomial algebra on a Banach space X 
(generated by a e L(X)) which extends to a representation of 0(U) (i.e., 
Sp(a) c (7), then all nearby representations of P also extend to (9{U) 
(Sp(b) remains in U for all b in some neighborhood of a). It is this property 
we would like to recapture in several variables. 

DEFINITION 3.1. Let Fn -• A be a localization of Fn with A l 5 . . . , A„ the 
maps of Definition 1.1. We shall say that A is a free analytic algebra on 
n-generators if there is a sequence {pk} of submultiplicative seminorms on 
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A, which defines the topology of A and has the property that for each 
k > 1 the maps At are continuous from A with the pk seminorm to A (g) A 
with the cross seminorm pk x pk-±. 

If Ak denotes the algebra obtained from A by factoring out the null 
ideal of pk and completing in the pk norm, then the content of Definition 
3.1 is that each At extends continuously to a map from Ak to Ak (g) Ak-1. 
By Proposition 2.3 this is equivalent to the relation Ak » Ak_1 for each 
k. Now suppose u -> u(a):A -• L(X) is a representation of A (generated 
by the tuple a = (al9..., an) of elements of L(X)) on a Banach space X. 
Since the p/s determine the topology of A, there is some i for which the 
representation factors through the map A-> At_x and, hence, determines 
a representation Ai^1-^ L{X). By Proposition 2.4, this implies that 
At » (X, a). By Proposition 2.5, the same relation holds for all /? = 
(bl9..., bn) in a neighborhood of a (in the norm topology of @M (L(X)). 
By Proposition 2.1, the representation of Fn determined by each such /? 
extends to a representation of At and, hence, to a representation w -* w(/?) 
of A. From this, and the comment following Proposition 2.5, we conclude 

PROPOSITION 3.1. Let A be a free analytic algebra and X a Banach 
space. Then the set of all a e @w L(X)for which (X, a) is an A-module is an 
open set in the norm topology. Furthermore, for each a in this set there is a 
neighborhood V of a and an integer i such that the representation u -» u(fi) 
factors through A -• At for each [leV and varies continuously with /? in 
norm as an element ofL(At, L(X)). 

We recall some notation from §1. If u -+ u(ot) and u -> w(/J) are represen
tations of A on X and Y respectively, then for each c G L(Y, X) there is a 
map u <g) v -+ U{OL)CU{P)\A <g) A - * L(Y, X). We denote the image of 

f e A® A under this map by ƒ (a, j8)[c]. Then c -> /(a , j?)[c] is a linear map 
from L( Y, X) to itself for each ƒ e v4 <g) A Now if X and Y are Banach spaces 
and u -> M(OC) and w -» w(/?) each factor through A -* At then the map 
c -• ƒ (a, j8)[c] is a bounded linear map from L(Y9 X) to L(Y, X) with norm 
dominated by the norm of ƒ in the Banach space A{ ® A{. In fact, it follows 
from Proposition 3.1 that1 the map c -> / (a, /?)[c] varies continuously with 
(a, f$) and satisfies a uniform bound for a and J? in sufficiently small 
neighborhoods [ / c 0 « L(X), K c 0 " L( Y). 

If we choose X = Y and c = 1 in formula (1.1), note we obtain the 
formula 

u(a) - u(P) = AiM(a, j?)[ax - b j + • • • + A„w(a, j8)[an - b j . 

If we set P = a + Ay for y = (c 1 ? . . . , cn) and A e C, this implies 

A_1[w(a + Ay) — u(a)] = A!M(a, a + Ay)[Ci] + • • * + A„w(a, a + Ày)[cn]. 
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On taking the limit as A -> 0 we conclude 

PROPOSITION 3.2. If A is a free analytic algebra and X a Banach space, 
then on the set of a e © n L(X)for which (X, a) determines a representation 
of A, each of the functions u(a)for ueA is an analytic function of a with 
derivative given by 

= Axw(a, a)[cx] + • • • + A„w(a, a)[c„] 
A = 0 

for y = (cu...,cn). 

The free analytic algebras on one generator are easily characterized. 
Recall from §1 that if P -• A is a localization of the polynomial algebra, 
then we denote by Q the set of all A e C for which the one-dimensional 
representation of P determined by z -* X extends to a representation 
(complex homomorphism) u -> û(X) of A. If A is a free analytic algebra 
then it follows from Proposition 3.1 that this set is open and each û is a 
continuous function on Q. By Proposition 3.2, each û is, in fact, analytic. 
It follows that u -• û is a homomorphism of A into 0(Q). Now A is a 
commutative F-algebra (projective limit of a sequence of commutative 
Banach algebras) and the spectrum of the generator z e A is exactly Q. 
Hence, it follows from the analytic functional calculus for Fréchet alge
bras (cf. [4]) that there is a homomorphism (9(Q) -> A so that the composi
tion (9{Q) -• A ->"~*"#(Q) is the identity. Since A is a localization of P 
and (9(Q) is an ^-module via the map A -» (9{Q) it follows from Proposi
tion 1.1 that the P-module homomorphism 0(Q) -> A must also be an 
,4-module homomorphism. This implies that 0(Q) is isomorphic to an 
ideal in A. Hence, A = (P(Q) © K is the direct sum of ideals, where 
K = ker(w -• û). This is impossible if K # 0 since K would also be a 
commutative F-algebra with identity and, hence, have at least one non-
trivial complex homomorphism. This complex homomorphism would 
extend to a complex homomorphism of A not determined by a point of 
Q. Thus, 

PROPOSITION 3.3. If A is a free analytic algebra on one generator, then 
A = (9(U)for some domain U <= C. 

In order to prove the converse, we must show that the map A:0(U) 
-• (9{U x U) given by Aw(A, œ) = {X — co)"1 (M(A) — u(œ)) is continuous 
from the pk to the pk x pk_x seminorms for some defining sequence of 
seminorms for the topology of (9(U). 

We choose a sequence of compact sets K1,X2,••• <= U with Ki_1 

a int(K;) and the property that every compact set in U is contained in 
some Kt. We then set pt(u) = supK. |M(A)|. The resulting family of semi-

dX 
u(a +Ay) 
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norms generates the topology of (9{V). Unfortunately, the greatest cross 
norm pt x pi_1 on (9(U x U) is difficult to describe. It is not simply sup 
norm on Kt x K ^ ; this is the least cross norm generated by pt and 
Pi-i (cf. [2], [6]). Hence, we must resort to some trickery. 

Given any compact set Lcz int(Kf), it follows easily from the Cauchy 
integral theorem that there is an M so that sup{|Aw(A, co)| :(A, œ)e Kt x L} 
^ Mpi(u) for every ue(9(U). Thus, if B is the completion of &(U) in the 
topology of uniform convergence on compact sets in V for some open 
V a Kt and if At is the completion of 0{U) in the norm ph then A extends 
continuously to a map from Ai to the completion of At (g) B in the topology 
of compact convergence onX ( x V. However, this is exactly the topology 
of bi-equicontinuous convergence for At (g) B (cf. [12,44.1]). Furthermore, 
B is a nuclear space (cf. [12, §51]) and, hence, the topology of equicon-
tinuous convergence on At (g) B agrees with the projective tensor product 
topology (cf. [12, 50.1]). It follows that A extends continuously to a map 
from At to At (§) B. Now if Fis chosen so that Ki_l a V a Ki9 then the 
restriction map B -^ Ai^.1 is continuous and induces a continuous map 
At ® B -+ At <g) At-i. Hence, A extends continuously to a map from A{ 

to At® At_v We conclude that 

PROPOSITION 3.4. The algebras 0(U) (with z as generator) are exactly 
the free analytic algebras on one generator. 

Observe that if a localization A of P is a Banach algebra then it is auto
matically also a free analytic algebra on one generator (with all p/s equal 
to the norm on A). Since no algebra (9{U) is a Banach algebra, there are no 
localizations of P which are Banach algebras. We strongly suspect that 
the same is true of localizations of Fn for arbitrary n. 

Are there any free analytic algebras on ^-generators for n > 1 ? In 
[11, §6], we gave several examples of localizations of Fn. Some of these are 
free analytic algebras. Here we shall construct one family of examples 
(the power series algebras) and in §5 give a technique for constructing a 
wide class of examples by factoring certain ideals out of power series 
algebras. 

We denote the generators of Fn by z1? . . . ,z„. A given monomial 
zjlzj2...zjk will be denoted za where a = 0'i,...,A)- Thus, a typical 
element of Fn is a finite sum £ff Xaza with each X0 e C. If r = (rl9..., rn) 
is an n-tuple of positive numbers (with + oo allowed), then J^(r) will 
denote the algebra of all infinite series £ff Xaza for which £„ \ka\ta < oo 
for every t = (tu...,tn) with 0 < tt < rt; here ta = tjltJ2... tjk for 
°" = (Zi> • • • J*)- Thus, J^(r) is the completion of F„ in the topology deter
mined by the family of seminorms {pt:t = (tl9..., tn% tt < r j , where 
Pt(Y,Kz<r) — Xl^rta- We call J^(r) the free power series algebra of radius 
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r = (rl9...,rn). 
We define a map At:Fn -> Fn ® Fn for i = 1 , . . . , n by 

(3.1) A ^ . . . zjk) = X ^ ( ^ • • • hi -1 ® zh +1 • • • Z;J> 

where £0- = 0 for i ^ j and <50- = 1 for i = j . It is a simple matter to check 
that A!, . . . ,A„ satisfy the conditions of Definition 1.1. Thus, Fn is a 
localization of Fn. 

If s and t are two positive n-tuples and 0 < X < 1 with sf ^ A^, i = 1 , . . . , 
M, then for each monomial zjl9..., zjk = zff we have 

A x ps(AiZ(T) = X 5 ^ • • • th^sjl + l • • • sjk 
i 

1 k 

= minfo} £ Jl JlJI+1 Jk 

1 k 

= minfo} ki h h 

1 

- ( l - A ) m i n { ^ } P t ( Z a ) -

Hence, the map Af is continuous from Fn with the pt norm to FM <g) Fn 

with the pf x ps norm. It follows that for any radius r = (rl9..., rn) we 
can choose an increasing sequence of norms pt which define the topology 
of J^(r) and satisfy the condition of Definition 3.1. Hence, 

PROPOSITION 3.5. Each of the power series algebras ^n(r) is a free analytic 
algebra on n-generators. 

4. Taylor's formula and power series expansions. Let Fn -» A be a 
localization. In this section, we shall construct analogues of higher deri
vatives for A by iterating the map A: A -» @n(A ® A) determined by the 
A/s. 

Wedefineamap0:0"O4 ® A)-+A <§> >4by0(./i 0 • • • 0 ƒ„) = fx * 5zx 

+ " * + ƒ « * <>zn (this is the map 6 of (2.3) in the case M = X = A). Note 
that the content of (c) of Definition 1.1 is that 

(4.1) ô = 9 o A, where <5w = w (x) 1 — 1 ® u. 

If 7T.J4 ® 4 -• A is the multiplication map, then we may construct a 
map (1 ® 7i)o (A ® 1):4 <§) A -• 0 (4 <§) 4) by applying A <g) 1:4 <§> A 
-> ( © " (A® A))® A=@n{A® A® A) and then applying 1 <g> TT: 
4 <§) (4 ® A) -• 4 (g) 4 in each term. The content of (a) and (b) of 
Definition 1.1 is that 

(4.2) (1® n)o(A® l ) o 0 = 1, 
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in fact, if we apply 0 to an element u ® v in the rth term of @w (A ® A) 
we obtain uzt ® v — u ® z£t7. Applying A ® 1 yields in the jth coordinate 

[Aju)zi ® i? + wCÂZf) ® v — AjU ® z,-t; (by (b) of Definition 1.1) 

= AjUZi ®v + èij{u (g) 1 (g) v) - AjU (g) ztv (by (a) of Definition 1.1). 

If we apply 1 (g) % to this, the first and third terms cancel and the middle 
term becomes ôtj{u ® v). This establishes (4.2). Since 0 has a left inverse 
it is one to one, as are the maps 1 (g) 0 and 0 <g) 1. We shall use this fact 
to prove that if we iterate A by applying it again on either side we obtain 
the same map, i.e., that (1 (g) A) o A = (A (g) 1) o A. 

It will be convenient to choose a basis (over the algebra A® A) for 
@n(A ® A). Thus, we denote by et the element of @n(A (g) A) which is 
1 (g) 1 in the ith coordinate and write ®n(A ® A) = @ t AetA. In general, 
by AehA... AehA we shall mean a specific copy of the fe-fold tensor 
product A® A ... A® A. The maps (1 (g) A) and (A (g) 1) applied coordi-
natewise to ^tAetA yield elements of @itj Ae^ejA. Hence, (1 (g) A) o A 
and (A (g) 1) o A are maps from A to (J) f J Ae^ejA. 

Note that by our comments above regarding 0, we have (1 (g) 0) © (0 (g) 1) 
= (0 (g) l)o (1 (g) 0); 0 . ^ . AetAejA -> A <g> A is one to one. Thus, in order 
to prove that (1 (g) A) o A = (A (g) 1) o A, it suffices to prove that 

(4.3) (1 ® 0)o(0® l )o (A® l)oA = (0(g) l)o(l (g) 0)o(l ® A)oA. 

Note that (0 ® l)o (A (g) 1) = Ô (g) 1 and (1 (g> 0)o(1 (g) A) = 1 ® 5 by 
(4.1). Hence, we must prove that 

(4.4) [(1 <g) 0) o (ô (g) 1) - (0 ® 1) o (1 ® ô)] o A is zero. 

If we apply (1 ® 0) o (ô ® 1) - (0 ® 1) o (1 ® Ô) to an element of 0 4 X^X 
of the form wefi; we obtain 

(u ® z,. ® v — u ® 1 ® ztv — 1 ® uzt ® i; -f 1 ® u ® zfi;) 

- (MZ,. ® t? ® 1 - w ® ztv ® 1 - uzt ® 1 ® 't; + u ® zt- ® v) ; 

on regrouping, this becomes 

— (uzt ® i; — u ® zti;) ® 1 — 1 ® (wzf ® t; — w ® zfi;) 

+ M z f ® l ® i ; - M ® l ® Zjt;. 

The first and second terms are — 9{uetv) ® 1 and — 1 ® 9{uetv\ while 
the third term is T23(0(w^i;) ® 1), where T23 is the map T2$:A (g) A (g) A 
-+ A® A® A which transposes second and third factors. It follows from 
(4.1) that the expression (4.4) applied to an element ue A yields 
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- 0 o A ( u ) ® 1 - 1 ® 0°A(u) + T23[6oA(u)® 1] 

= l ® w ® l - w ® l ® l + l ® l ® w 
- l ® w < g > l + w ® l - l ® l ® w 

= 0. 

This completes the proof that 

PROPOSITION 4.1. The maps ( 1 ® A ) O A and ( A ® l ) o A from A to 
Y,i,j AeiAejA are identical 

We denote the map (A ® l)o A by A2. Note that it also follows from 
Proposition 4.1 that if we define Ak inductively by Afc = (A ® 1 ® • • • ® 1) 
A*-1, then 

( 1 ® - - - ® A ® - - - ® l )oA k _ 1 = Ak 

where A can be placed in any slot in (1 ® • • • ® A ® • • • ® 1). If we set 
0' = 1 ® • • • ® 0 ® • • • ® 1 (9 in the îth place) and Sl = 1 ® • • • ® ô ® • • • 
® 1 (ö in the ith place) then equation (4.1) implies that 

(4.5) (5fAfc_1 = 0'o A*. 

Given k + 1 representations (X, a 0 ) , . . . , (X, ak) of A on X and k 
n-tuples y 1 , . . . , yk with each yj = (c{ , . . . , cJ

n) a tuple of elements of L(X), 
we can define, for each f^Yuh-h^ejA ' ' ' AejkA, an element 
/ ( a 0 , . . . , a*)[y, . . . , yn] e L(X) by evaluating the factors of AehA • • • 
AehA at the representations a 0 , . . . , <xk and replacing each eh by éh. In 
other words, if/ = u0ejlu1 - • • uk.^e^k then 

ƒ (a 0 , . . . , cck)[y 1 ? . . . , yk] = w0(a0)cj1w1(a1)... uk_ i(a„_ ^ ^ ( a * ) . 

If we use this notation, then (4.5) implies that 

Aku(a0,..., af_ l9 a, a i+ ! , . . . , a * ) ^ , . . . , yk] 

- A*w(a0,..., a£_ l9 ft a i + 1 9 . . . , a ^ , . . . , y2] 
(4.0) 

= A ^ ^ a o , . . . , ^ - ! , ^ ^ , ^ ^ ! , . . . , ^ ) ^ ! , . . . , ^ - ! ^ - ^ ^ , . . . , ^ ^ . 

If we begin with an arbitrary pair of representations a and ƒ? and iterate 
(4.6) we obtain 

u(a) = u(p) + An(a, )8)[a - /*] 

= u(P) + AMO», j8)[a - p\ + A2(a, ft ft[a - ft a - j8] 

= ii(j8) + Au(ft j?)[a - j8] + A2u(ft ft j8)[a - ft a - ft| 

+ A3w(a, ft ft j8)[a - ft a - ft a - jB] 
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and so on. Thus, 

PROPOSITION 4.2. Let Abe a localization ofFn and (a, X) and (ƒ?, X) two 
representations of A on X. Then 

11(a) = u(p) + Ati(/J, j3)[a - ]8] + • • • 

(4.7) + A * f i ( i 8 , . . . , / 0 [ a - i 8 , . . . , a - i 8 ] 

+ A k + 1 ( a , /» , . . . , j 8 ) [« - /» , . . . , « - j8 ] 

/or eac/i U G A 

Formula (4.7) is our analogue of Taylor's formula. The fc-linear trans
formation Aku(P,..., P): Xk (©nL(X)) -» L(X) plays the role of the fcth 
coefficient. Note that only for the last term of (4.7) does the coefficient 
depend on a. Note also that if p happens to be a tuple of scalars (multiples 
of the identity) then the coefficients Aku(p9..., ƒ?) must be scalar multi
linear forms. This follows from the fact that, for veA9 v{fi) commutes with 
all operators that commute with each entry in the tuple /? (Proposition 
1.1). Thus, in this case, (4.7) represents an honest polynomial in 
a1 — bl9...9an — bn together with a remainder term. 

If A is a free analytic algebra, then for a near /? we can obtain bounds 
on the sizes of the coefficients in (4.7) when X is a Banach space and 
conclude that the resulting power series converges. In fact, if u -• u(P) 
factors through A-+ At-.l9 then for a in some neighborhood Voî fi we 
have u -* w(a) factors through A -> At and satisfies a uniform bound 
|| «(a)|| :g Mpi(u). Furthermore, the map A extends to a bounded linear 
map A:Ai-> (J)w (At ® ^ - i ) - If the norm of this map is N then we con
clude that ||Ak|| = iVkand 

\\Aku(p9...9p)[x - / U . , « - 011 S NkMfc+1(max||af - bt\\)
k. 

Thus, 

PROPOSITION 4.3. If A is a free analytic algebra and (X9 P) is a represen
tation of A on a Banach space X9 then for a in some neighborhood V of P 
the series 

(4.S)u(P) + Au(P9p)[oc-P] + -' + Aku(p9...9p)[a-p9...,oi-P] + -' 

converges absolutely and uniformly (on V) to u(ot). 

An alternate form for (4.8) is the following: Let a = (bx + X^cl9..., 
K + Kcn)> P = (bi,..., K)9 and y = (cl9..., cn)9 then the scalars A, pull 
out of the terms of (4.8) to yield a power series in A1 ? . . . , A„ with operator 
coefficients determined by the expressions Aku(P9..., P)[y9 y9..., y]. 

The form of the power series (4.8) suggests that we attempt to construct 
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free analytic algebras which are power series algebras with "coefficients" 
which lie in multiple tensor products of an operator algebra L(X) or, 
more generally, some "coefficient" Banach algebra B. Specifically, for a 
Banach algebra B and an n-tuple r = (r l9...9 rn) of positive numbers, let 
Ur(B) be the algebra consisting of all series of the form ^ = 0 fk with 

ƒ*= E g.e I BehBeh-BejkB 
l(Tl = fc <X = 0 ' l jk) 

and YJ!L*
 loUa\\ < °° for each tuple t = (tl9..., tk) with tt < ri9 where 

ta = tjltJ2 - - - tjk. Elements of this algebra are multiplied in the obvious 
way. 

We are attempting to construct a free analytic algebra with 
at + el9...9an + en as generators for some set al9...9aneB. There are 
maps A1? . . . , A„ from Ur(B) to Ur(B) ® Ur(B) which satisfy (a) and (b) 
of Definition 1.1. These are defined by 

(4.9) Al(u0ejl • • • uk_^ekuk) = £ ôlJi(u0eh • • • eh_i) ® {ujteji + 1 • • • ejkujk) 
i 

in other words, by letting Aj be zero on terms of degree zero and then by 
summing over all ways of replacing an ex by 1 (g) 1 in higher degree terms. 

The set of maps A l 9 . . . , A„ defined by (4.9) certainly does not satisfy 
(c) of Definition 1.1. However, (c) is satisfied by A l 9 . . . , A„ if we restrict 
to a certain subalgebra Pr{B) of Ur(B). The restrictions defining Pr(B) are 
suggested by (4.5). They are 

(4.10) <5!/fc-i = 0!/fc fori = l , . . . ,kandfc= 1,2,... 

where 

bi(u0eh...eh_1uk_1) 

= u0eh . . . ui.2eh_i(ui.1 ® 1 - 1 ® ui.l)ehuh . . . eh_xuh^ 

and 

e\u0eh . . . ejkuk) = u0eh . . . uh_x(ah ® 1 - 1 ® a ^ . . . ejkujk. 

It turns out that the maps A t , . . . , An do satisfy (c) of Definition 1.1 
when restricted to Pr(B). Now, each Af maps Pr(B) into Ur(B) ® Ur(B)9 but 
does it define a map of Pr(B) into Pr(B) ® Pr(B)l It is possible to prove 
that the conditions defining Pr(B) are satisfied in each factor by an element 
of Ur(B) ® Ur(B) in the image of Af, but this is not enough to prove that 
such an element actually lies in Pr(B) ® Pr(B). The difficulty is this: Given 
closed subspaces Yt of topological vector spaces Xt (i = 1,2), the projective 
tensor product topology for Yx ® Y2 may be strictly stronger than the 
projective tensor product topology for Xt ® X2 restricted to Yt ® Y2. 
Hence, the completed space Yi ® Y2 may fail to have a closed image in 
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Xt ® X2 (cf. [12, Remark 43.2]). There is no difficulty if Yx and Y2 are 
nuclear spaces (cf. [13, 50.1]) or if they are direct summands of X1 and Z2. 
Unfortunately, neither of these conditions seems likely to hold in our 
situation. 

We have thus far been unable to see a way out of the above difficulty in 
general. However, in the case where B is a finite-dimensional matrix 
algebra and au.. .9aneB have the property that only multiples of the 
identity commute with each ai9 we believe that for small enough r, Pr(B) 
is a direct summand of Ur(B) and, hence, is a localization (in fact, a free 
analytic algebra), and also has the property that every b e B is the image 
of some element of Pr(B) under the representation generated by the tuple 
a = (al9.. . ,an) (i.e., the representation ££°=o ƒ*-» f0). The reason we 
believe this is that, in this situation, we can define, for each l9 a map which 
assigns to a tuple f09 f l 9 . . . , fx satisfying (4.10) for 1 ^ k ^ /, an element 
fl+1 so that (4.10) is satisfied for k = / 4- 1 as well. If this map satisfies 
appropriate bounds it can be used to construct ]T fk e Pr(B) with a given 
first term f0 and also to define a map from Ur{B) to Pr(B) which is the 
identity on Pr(B). This would show that Pr(B) was a direct summand of 
Ur(B) and eliminate, for this case, our difficulties with the proof that 
Pr(B) is a localization. We believe that our map does satisfy the right 
bounds for small enough r but have not checked all the details. 

For infinite-dimensional B, the problem of salvaging something out of 
the above construction seems quite difficult. 

5. The implicit function theorem. If u is a C°° function on a domain in 
JR" (or an analytic function on a domain in Cn) and if the partial derivative 
of u with respect to one coordinate never vanishes on the zero set of w, 
then the ordinary implicit function theorem states that the zero set of u 
is an (n — l)-dimensional manifold with a global coordinate system given 
by the remaining coordinate functions. For an m-tuple of functions, a 
similar statement holds with the Jacobian matrix relative to m of the 
coordinates playing the role of the partial derivative. For localizations of 
Fn9 there is a complete analogue of this form of the implicit function 
theorem. Here the two-sided ideal generated by an element u plays the 
role of the "zero set." 

Thus, let A be a localization of Fn with generators zl9..., zn. Let w be 
an element of A91 the two-sided ideal generated by w, and I the kernel of 
the map A (§) A -• A/I (g) A/I (note that I contains J ® A + A (§) ƒ). As 
before, we consider A (g) A to be an algebra with operation 

(u ® v) * (u' (g) v') = uu' ® v'v. 

Note that ƒ is a two-sided ideal of A <§) A, 
By Definition 1.1 we have ôw = (Axw) *ozx + ••• + (A„w) * bzn. Now 
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suppose A nw has an inverse modulo 7; that is, suppose there is an element 
g G A (§) A such that g * (AMw) — 1 0 lei and (AMw) *g— 1 (g) 1 G I. We 
then set 

A tu = A,-M — (A„w) * g * AfW for i = 1,. . . , n — 1. 

It is clear that the A '̂s satisfy (a) and (b) of Definition 1.1 for the variables 
zl9..., zn_ j . Furthermore, 

&1u*ôz1 + ••• + An_1u*ôzn_1 

— A„w * g * [AiW * 5zx + • • • + An_ xw * <5z„_ J 

= AXM * &! + * * * + A„_ xu * Szn_ x — Anu * g * [(5w — A„w * &w] 

= A1u*Sz1 + ••• + A , , , ^ * ^ ^ + AMw*(g*Aww)*(5zn 

— Anw * g * ôw 

which is equivalent mod ƒ to<5u. Thus, Â l 5 . . . , Kn_ x satisfy (c) of Definition 
1.1 for zl9..., z„_ ! modulo the ideal J. 

Note that Â̂ w = Atw - Anw * g * À-w G 7 and that (b) of Definition 1.1 
implies that, in fact, A . maps all of/ into I. It follows that At defines a map 
2Lt:A/I -• A/1 <g> 4 / / for i = 1,. . . , n - 1, such that (a), (b), and (c) of 
Definition 1.1 are satisfied relative to the variables zl9..., z„_ v In other 
words, A/I is a localization of F„_ ^ with generators z l 5 . . . , z„_ j . 

It is not difficult to see that if the A/s satisfy the continuity condition of 
Definition 3.1 relative to some sequence of seminorms defining the 
topology of A9 then the S/s satisfy the condition relative to the corres
ponding induced family of seminorms on A/1. Hence, if A is a free analytic 
algebra then so is A/1. 

Now suppose wu..., wm are elements of A generating a two-sided ideal 
ƒ, and that the (n — k) x m matrix J = (Afc+Jwf)0- (i = 1,.. . , m, j = 1,. . . , 
n — k) is invertible modulo the ideal I a A® A corresponding to I; 
that is, J defines an invertible operator from Q)n~k(A/I <g) A/1) to 
Q)m(A/I (g) i4/J). It follows from the fact that this operator is a right 
A (§) ̂ -module homomorphism that its inverse must be determined by 
an m x (n — fc)-matrix with entries from A ® A. This matrix then plays 
the role of gin a vector-matrix version of our previous argument. Such an 
argument establishes 

PROPOSITION 5.1. Let A be a localization (free analytic algebra) with 
generators zl9...9zn. If wl9...9wmeA9 I is the two-sided ideal they 
generate, and I is the kernel of A® A^> A/I (g) A/1, then A/I is a localiza
tion (free analytic algebra) with generators zl9...9zk provided the matrix 
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J = (Ak+jW^ij is invertible modulo I. 

Note that since we are working with noncommutative algebras a 
matrix J like the one above can be invertible without being square. We 
shall call the matrix J = (Ak+jwf)0- the Jacobian matrix for w! , . . . ,w m 

and zk+ ! , . . . , z „ . 
We conclude this section with three examples. The first two show how 

Proposition 5.1 can be used to construct free analytic algebras in which 
certain equations have solutions. 

EXAMPLE 1. For some multi-radius r = ( r l 9 . . . , r„), let J^(r) be the power 
series algebra of §3. We wish to embed J^(r) in a new free analytic algebra 
(on the same generators) in which a given element v e J^(r) has an inverse. 
This is possible provided for some rM+1, rn+2 the ideal I generated by 
wi = vzn+1 - 1 and w2 = zn+2v - 1 in ^ + 2 ( r ' ) (r' = (rl9...,rH+2)) is 
proper. In fact, in this case the Jacobian matrix for (wl9 w2) and {zn+l9 zn+2) 
is 

v®l 0 

0 1 <g)i?( 

which has left inverse 

' *»+2®l ° 
0 l®zn+1 

modulo I and right inverse 

' l ® * „ + i 0 
0 z B + 2 ® l 

modulo ƒ. It follows that either one of these is actually an inverse modulo 
ƒ and, hence, that J^+2(r')// is a free analytic algebra with generators 
zl9..., zn. Clearly, the elements zn+1 and zn+2 are equal modulo J and 
provide an inverse for v. 

EXAMPLE 2. Again we begin with !Fn{r). However, this time we wish to 
construct an embedding of J^(r) in a free analytic algebra such that for a 
given w, v e ^n(r) the system of equations 

(5.1) ux + vy = 1, xu = yv = 1, xv = yu = 0 

has a solution x, y. This is possible provided for some rn+u rn+2, r„+3 , 
rM+4 the ideal I generated by 

wx = uzn+1 + ÜZ„+2 - 1, w2 = zn+3u - 1, 

w3 = zw+3i;, w4 = zw+4i; - 1, w5 = zw+4w 

is proper in J^+4(r') (r' = ( r 1 ? . . . , rM+4)). In fact, here the Jacobian for 
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(w!,...,w5) and (zn +!, . . . , z„+4) is 

v®1 0 0 \ 
0 \®u 0 I 
0 1 ®v 0 
0 0 1 ® v J 
0 0 1 ® u I 

which has left and right inverses modulo I given by 

0 0 \ 
0 0 1 
0 0 

and 

jzn+1®l 0 0 0 0 \ 
lzn+2®l 0 0 0 0 1 

0 l®zn+3 l®zn+4 0 0 

\ 0 0 0 l ® z „ + 4 l ® ^ + 3 / 

It follows that modulo I these matrices agree and determine an inverse 
for the Jacobian. Thus, by Proposition 5.1, ^,+4(r')/J is a free analytic 
algebra in which the elements x = zn+1 = z„+3 and y — zn+2 = z»+4. 
provide a solution to (5.1). 

Obviously, the above procedure can be extended to obtain free analytic 
algebras and elements for which the system 

(5.2) uxxx + • • • + unxn = 1, XtUj = otj 

has a solution. Note that such an algebra can have no finite-dimensional 
representations since the system of equations (5.2) can never be satisfied 
among operators on a finite-dimensional space H (since (5.2) means 
exactly that the map ® k H -+ H, determined by h1 (g) • • • ® hk -* 
ulh1 + * * * + ukhk9 is invertible). 

One choice for the tuple (w1?..., uk) in (5.2) is the tuple of generators 
(z l 5 . . . , zn) of <^(r). In this case it is in fact possible to embed ^n(r) in a 
free analytic algebra with generators zl9..., zn such that (5.2) has a 
solution. An explicit construction of such an algebra was carried out in 
[11]. The construction amounts essentially to what was done above in the 
two variable case. Here the problem of proving that the ideal / is proper 
for an appropriate choice of (rn+19 rn+2,...) is handled by demonstrating 
an explicit Banach space representation of ^(rpin which the equation 

ƒ u® 1 
/ 0 

0 

0 

0 

zw +3®l 0 0 
z„+4 ® 1 0 0 

0 l®zn+1 l®zn+2 

0 0 0 
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(5.2) has a solution for operators xl9..., xn on the space. The norms of 
these operators yield choices for (rn+i9...) such that the representation of 
J^(r) extends to a nontrivial representation of the new algebra, thus 
proving that the new algebra is nontrivial and / is proper. 

The reason for being interested in equations like (5.2) is that the solva
bility of (5.2) for (ul9..., uk) seems to provide the "correct" definition (in 
the context of several free variables) of the statement that the tuple 
(ui9 . . . , uk) is nonsingular. We shall discuss this point in more detail in §7. 

EXAMPLE 3. Let ui9.. .9uk be elements of Fn and rl9..., rk > 0. In the 
algebra ^n+k(r) (r = (co,..., oo,r l5..., rh))9 we consider the ideal I 
generated by wx = zn+1 — ul9...9wk = zn+k — uk. Note that the Jacobian 
is the k x k identity matrix 

/ 1 ® 1 0 ••• 0 \ 

0 1® 1. . . 0 I 

\ 0 0 • • •1®1 / 

which is invertible. Hence, if / is proper then ^n+k(r)/I is a free analytic 
algebra on the generators z1 ? . . . , z„. Note that in each of the seminorms 
defining the topology of this algebra, the elements ul9...9uk have norms 
less than or equal to the corresponding numbers rl9..., rk. Algebras of 
this type are the appropriate free analogues of algebras of analytic func
tions on polynomial polyhedra. 

6. A compactness result. The free analytic algebras on a single generator 
(the algebras (9{U)) are all nuclear spaces. However, it appears that free 
analytic algebras on more than one generator are never nuclear. Cer
tainly, the algebras J%r) for n > 1 are not nuclear (cf. [11, §6]). They are, 
however, Montel spaces (bounded sets are precompact). We suspect that 
all free analytic algebras are Montel spaces. In fact, for the distinguished 
family of seminorms {pt} of Definition 3.1, we conjecture that the bonding 
maps At-^ A^u of the corresponding inverse limit system must be 
compact operators. This would imply that A = lim At was Montel. 

If A = lim At is a free analytic algebra, with the At's the Banach algebras 
of §3, then recall that At » Ai_1 for each i. Now if A -> B is a homomor-
phism, with dense range, of A into a Banach algebra B and u -• w(a) 
determines a representation of Fn on a Banach space X9 then the relation 
B » (X, a) implies that u -> u(oc) extends all the way to a representation 
(p:B -• L(X) of B on X (Proposition 2.1). We suspect that the relation 
B » (X9 a) is strong enough to force <p to be compact. If this were true it 
would certainly imply that the maps Ai-^Ai_1 in the inverse limit 
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system for A were compact. 
Now given B and (X, a) as above, the relation B » (X9 a) implies the 

exactness of the sequence (2.3) with B = M and the fact that 
6: © " B <g) X -• B <g) X has a left inverse. It follows that there is a constant 
K > 0 such that, for each ueB9xeX with ||u|| g 1, ||x|| g 1, there are 
fl9...,fHeB®Xmth\\fi\\£Kaiid 

W ® X — 1 ® MX = / i * ÔZl + * ' * + fn* Sz„. 

If g; = (<p ® 1), ƒ• e L(X) ® X and c -> gf[c] is the map from L(X) to X 
determined by inserting c between factors in the tensor product, then 
(since <p(zt) = at) 

(p(u)cx - ccp{u)x = g^üiC - cat] + • • • + gn[anc - can]9 

which implies that, for K' = ||<p||K, 

(6.1) \\bc - cb\\ ^ K'lW^c - cax\\ + • • • + ||awc - ca j ] for ceL(X), 

for all fc in the image under cp of the unit ball of B. 
The condition (6.1) on a family of operators b has something in common 

with a uniform Lipschitz condition for a family of ordinary functions. We 
feel that something like the Ascoli-Arzela Theorem is at work here and 
that a bounded family in L(X), satisfying (6.1) uniformly, must be pre-
compact in the norm topology. We cannot prove this, but we can prove 
that such a family is strongly precompact if X is a Hubert space. Our 
proof depends on the following: 

PROPOSITION 6.1. Let X be a Hubert space and al9...9an any finite set 
of operators in L(X). Then9for any s > 0 and any finite-dimensional sub-
space M a X9 there is a finite rank operator c s L(X) with c = 1 on M 
and \\atc — cat\\ < s for i — 1 , . . . , w. 

PROOF. Let S be the set of all finite rank operators a on X for which 
||a|| ^ 1 and a = 1 on M. If LC(X) denotes the space of compact operators 
on X9 we define a map (p:Lc(X) -> @nLc(X) by 

n 

(Pic) = 0 (atc - cat). 
t = i 

Now the set S is convex and so its image cp(S) under cp is a convex subset 
of the Banach space LC(X). The conclusion of the proposition is precisely 
that the norm closure of (p(s) contains zero. 

Suppose that zero is not in the closure of q>(s). Then there exists a 
bounded linear functional F on 0 W LC(X) such that Re F(cp(S)) ^ k> 0. 
Now comes the crucial fact about Hilbert space: The adjoint space of 
LC{X) is the space LT(X) of trace class operators with trace norm, where 
the pairing is defined by (b9 c) -> tr(fcc) (cf. [12, §49]). It follows that the 
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functional F, above, has the form F(cu..., c„) = t r ^ c ^ ) + • • • + tr(b„cn) 
for some set bl9..., bn of trace class operators. Thus, for this set of opera
tors we have 

(6.2) Ref t r t&^c - caj] + • • • + tr[bn{anc - caj]) ^ k > 0, 

for all C G S . Furthermore, since the finite rank operators are dense in the 
space of trace class operators with trace norm, we can assume without 
loss of generality that the fef's are actually of finite rank. 

Now if JV is the linear span of the ranges of the operators b^ — a}){ and 
the space M, then the orthogonal projection p on JV is an element of S. 
We choose c = p in (6.2) and note that, for each i, 

tribiiaj) - pa,)) = tr(p(^a,. - a,fc,)) = tr(bfa£ - atbt) = 0. 

The resulting contradiction shows that zero is in the closure of cp(S). 

PROPOSITION 6.2. If X is a Hubert space, K > 0, and al9...9aneL(X), 
then the set T of all operators b e L(X) with \\b\\ ^ K and 

(6.3) \\bc - cb\\ ^ K X ||a|C - cat\\ for all c e L{X) 
i 

is precompact in the strong operator topology ofL(X). 

PROOF. Since T is bounded, it is precompact in the weak operator 
topology. We shall show that the weak and strong operator topologies 
coincide on T due to (6.3). 

For a given x e X, we choose a sequence {c,} of finite rank operators 
with CjX = x, \\Cj\\ = 1 and \\atCj — Cjat\\ < l/j for each ij (using Propo
sition 6.1). Then, by (6.3), we have 

\\bcj - Cjb\\ < nK/j for i = 1, 2, 3 , . . . , and b e T. 

It follows that for b,b' eT we have 

(6.4) ll&x - b'x\\ = \\{bcj - b'cj)x\\ S 2nK/j + \\cj{bx - b'x)\\. 

However, since each Cj has finite rank, the map b -> \\Cjbx\\ is continuous 
in the weak operator topology for each j . It follows from this and (6.4) 
that if ba -> b in T in the weak operator topology then bax -> bx in norm. 
Hence, weak operator convergence implies strong operator convergence 
in T. This completes the proof. 

If the above result could be proved for general Banach spaces X, then 
it would imply the compactness of the maps At-> At_x for a free analytic 
algebra A. In fact, with X = Ai_i the relation A » Ai_1 implies that the 
image of the unit ball of At consists of a set E of elements of At_ x satisfying 
(6.3) when considered as a set of operators on At_ x via left multiplication. 
Thus, if Proposition 6.2 held for X = At_u the set £, considered as a set 

file:////bcj
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of operators, would have to be precompact in the strong operator topology. 
However, since At-t has an identity, the strong operator topology coin
cides with the norm topology for left multiplication operators. 

The relation expressed by (6.3) between an operator b and a tuple of 
operators al9...9an strikes us as interesting in itself, independently of its 
relation to the study of free analytic algebras. It appears to be considerably 
stronger than simply saying that c belongs to the second commutant of 
the set {au..., an}. It is tempting to let this relation define the statement 
"b is a Lipschitz function of the operators au...,a„"; however, for the 
case of a single selfadjoint operator a of the form af(X) — kf(X) on L2{JJ) 
for a compactly supported measure ILL on the line, the relation seems to 
imply somewhat more than the fact that b has the form bf(X) = g{X)f(X) 
for some Lipschitz function g on the support of \x. 

7. Resolvents and the functional calculus. For a localization F„ -> A 
and a left F„-module X, the functional calculus problem is the problem of 
deciding whether or not the corresponding representation of Fn on X 
extends to a representation of A. According to Proposition 2.2, an exten
sion exists if and only if A » X, when A is considered an augmented right 
F„-module. Here we shall present some results which make plausible the 
following formula for attacking the functional calculus problem: Begin 
with an augmented right FM-module satisfying M » X, and then modify 
M by a sequence of steps which preserve this relation and end with A. 
These "allowable" modifications of augmented right F„-modules involve 
a relation " J_" between right and left FM-modules which is complementary 
to " » " and is related to the resolvent set of single variable spectral theory. 

Recall from §2 that if M is a right Fn-module and X a, left F„-module, 
then there is a map 0:@w (M (§) X) -> M (g) X defined in terms of the 
generators zl9..., zn of A by 

(7. i) 8{ fx e • • • e ƒ„) = /!* szx + • • •+ƒ„* ôzn, 
where (m (g) x) * {u (g) v) = mu (g) vx and ou = u (g) 1 — 1 (g) u. If M is 
augmented with distinguished vector e, then the condition that M » X 
is equivalent to the statement that the maps 6 and x -> e ® x:X -• M (g) X 
have left inverses and the direct sum of their images is M (g) X. Another 
way of saying this is that there is a map cp : M (g) X -* X for which the 
sequence 

n 

O ^ 0 ( M ® I ) 4 M ® I A I - > O 

is exact and split. 
DEFINITION 7.1. If M is a right Fw-module and X a left F„-module, then 

we shall write M 1 X if the map 6:0" (M <g) X) -* M (g) X is invertible. 
The class of modules M satisfying M LX will be called the resolvent 
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class for X. 
The importance of the notion "_L" lies in the fact that the following 

statements are almost true: If L is a submodule of an augmented module 
M and L 1 I , then M » X if and only if M/L » X; similarly, if L is an 
augmented submodule of the augmented module M and N = M/L 
satisfies NIX, then M » X if and only if L » X. 

The reason the above statements are only "almost" true is that the 
functor (•) (g) X does not, in general, preserve the exactness of short exact 
sequences. This is a very annoying difficulty that is basic to the subject. 
We give a brief description of the problem and then move on to the more 
complicated but correct versions of the above relations between " 1 " and 

Suppose O - ^ L - ^ M - ^ i V - ^ O i s a short exact sequence of topological 
vector spaces and continuous linear maps. If X is a topological vector 
space then for the sequence 

0 -> L <g> X^®X M®X?®XN® X—• 0, 

j8 (g) 1 has dense image and a <g) 1 has its image dense in ker(/? (g) 1) 
(cf. [12, §43]). If M, N and X are Fréchet spaces then ƒ? (g) 1 is actually 
onto (cf. [12, §43]). However, even if all the spaces are Fréchet spaces (or 
even Banach spaces) a <g) 1 may fail to have closed image and it is not 
known whether or not it must be one to one (cf. [2,1, §1, n°2]). There are 
several special conditions which can be imposed, each of which forces 
a (g) 1 to be a topological isomorphism onto its image and, hence, to have 
closed image equal to ker(/? (g) 1). One such condition is that L or X be 
nuclear (cf. [2, II, §3, n°l]); another is that X be isomorphic to a space of 
the form L1^) for some measure \i, or that it have a topology defined by 
a family of seminorms for which the corresponding Banach spaces have 
this form (cf. [2, I, §2, n°2]); another is that L be a topological direct 
summand of M (i.e. that the sequence 0->L->M-»iV->0be split). 

PROPOSITION 7.1. Let 0 -• L ->a M ->fi N -• 0 be a short exact sequence 
of right F „-modules ana let X be a left Fn-module. Suppose that L, M, JV, X 
are Fréchet spaces and a ® l : L ® X - > M ( t ) X is a topological iso
morphism onto its range (equivalently, a (x) 1 is one to one and has closed 
range). Then 

(a) if M and N are augmented and ƒ? preserves the distinguished vector, 
any two ofL±X,M» X, and N » X imply the third; 

(b) ifL and M are augmented and cc preserves the augmentation, any two 
ofL » X, M » X, and NIX imply the third; 

(c) any two of the relations L _L X, M 1 X, and NIX imply the third. 

PROOF. The hypotheses are sufficient to force 
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0 -+ L ® X^®± M<g)XmN®X-+0 

to be an exact sequence of Fréchet spaces. The proof then follows from 
an analysis of the commutative diagram 

0 ̂  0 ( L ® Z)f^i0(M ® X ) ^ 0 (iV ® X) ^ 0 

(7.2) 

0- >L ® X—«fii—M ® X- >N®X- »0 

where 01,02, and 03 are the maps 0 of (7.1) for L ® X, M ® X, and iV ® X, 
respectively. In fact, the invertibility of 01 (or 03) is equivalent to the fact 
that the other two maps have isomorphic kernels and isomorphic co-
kernels (via the maps induced by ft ® 1 (or a ® 1)). This, together with the 
open mapping theorem for Fréchet spaces, yields all three parts of the 
proposition. 

The relations MIX and M » X also have certain invariance proper
ties relative to the second variable X. The first of these is proved by 
simple diagram chasing in the following: 

O - + 0 ( M ® X ) ^ 0 ( M ® Y)i^0(M®Z)-+O 

0- *M® X- 1 <g>a »M® Y- -»M ® Z—• 0 

This is the result. 
PROPOSITION 7.2. Let 0 -» X ->a Y ->p Z -» 0 be a short exact sequence 

of left Fn-modules and M a right Fn-module. Suppose X, 7, Z, and M are 
Fréchet spaces and the map l ® a : M ® X - > M ® Y is one to one and 
has closed range. Then 

(a) any two of M _L X, M J_ Y, and M 1 Z zmpfy the third; 
(b) *ƒ M is augmented, then any two of M » X, M » Y, M » Z imp/y t/ie 

t/nrd. 

Now suppose that a:X -* Y is a left F„-module homomorphism. Then 

X =Ker(a) and L = I m ( a ) 

are closed submodules of X and Y respectively. Furthermore, if the 
induced map M ® K -> M ® X is a topological isomorphism, then 
M ® K may be identified with the kernel of 1 ® a : M ® X - > M ® Y. 
Similarly, if M ® L - > M ® Y is a topological isomorphism, then M ® L 
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may be identified with the closure of the image o f l ® a : M ( g > X - > M ( g ) 7 . 
The diagram 

0 (M®X)i^0(M® 7) 

M ® X 1(g)Qt—•M ® 7 

is commutative, and so if 0 is invertible for both M (g) X and M (g) 7, its 
inverse commutes with 1 ® a. This implies that 0"* maps the kernel and 
closure of the image of 1 ® oc:M ® X -• M (g) 7 into the kernel and 
closure of the image of 1 ® a : 0 M (M ® X) -> 0 " (M <g) 7), respectively, 
and, hence, 0 is invertible for these spaces as well. 

A similar analysis works for the map Jf of §2 as well. We conclude that 

PROPOSITION7.3. If a:X -* 7 is a left Fn-module homomorphism, and M 
is a right Fn-module for which M _L X, M _L 7 (or M is augmented and 
M » X, M » 7), tfœn 

(a) if M ® (Ker(a)) -• M (§) X is a topological isomorphism, we have 
M 1 Ker(a) (or M » Ker(a)); 

(b) if M ® (Im(a)) -+ M ® Y is a topological isomorphism we have 
M 1 (135(0)) (or M » Im(a)). 

The relations " 1 " and " » " were introduced and discussed in [11] for 
more general base algebras (other than just Fn). Propositions 7.1 and 7.2 
hold for these more general base algebras. Also, additional properties of 
" » " and " 1 " are proved in [11]. For example, under appropriate restric
tions, transitivity properties such as "M » N and N » X imply M » X", 
and "M _L iV and N » X imply M I X " hold for a trio M, AT, X con
sisting of a right, a two-sided, and a left module (cf. [11, Proposition 2.7]). 
We shall not prove these results here. 

We end this section by showing how the above results can be used to 
attack the functional calculus problem. In fact, in the single variable case, 
these techniques lead to a (possibly new) proof of the standard analytic 
functional calculus theorem. 

Let X be a Banach P-module with the module action generated by 
a e L(X). If X e C, then k determines a one-dimensional P-module Cx with 
generator k. Note that CA <g) X = X and the map 0 for the pair Ck and 
X is just (k — a)\X -> X. Hence, CA _L X means that k — a is non-
singular, i.e. that A is in the resolvent set of the operator a. 

Now suppose V is a domain in C which is contained in the resolvent 
set p(a) of a. The space (9(V) ® X may be identified with the space of 
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holomorphic Z-value functions on V (cf. [12, §51]). Under this identifica
tion, the operator 6 for the pair (9(V\ X is represented by the operator 
value function X -» (X — a). Since V c p(a\(X — a ) - 1 exists on V and 
defines an inverse for 6:(9(V) ® X -» (9(V) <§) X. We conclude that 
V c p(a) implies (9(V) 1 X. 

Now (9(C) is the algebra of entire functions, i.e. the algebra of power 
series with infinite radius of convergence. It is a localization of P which 
acts on X under the representation determined by substituting a for the 
generator in each power series. It follows from Proposition 2.2 that 
(9(C) » X. 

Let U be a domain containing Sp(a) = C/p(a) and set V = p(a). Since 
U u V = C it follows from Cousin's theorem (cf. [3, 1.4.5]) that the 
sequence 

0 -> (9(C) A 0(£7) © ©(7) A ^ ( [ / n F ) - ^ 0 

is exact, where a/ = f\u®f\v and j8(/i © f2) = f^^ - f2\ur,v s i n c e 

(9(C) is nuclear, the condition of Proposition 7.1 is satisfied. We consider 
(9(C) and 0([/) © (9(V) to be augmented right modules with distinguished 
vector 1 and 1 © 1, respectively. Then we have (9(C) » X, 0(1/ n F ) U 
since U n V a p(a\ and hence, by Proposition 7.1, 0(1/) © 0(F) » X, 
However, (9(V) JL X, and so Proposition 7.1 also implies that (9(U) » X. 
This means that the representation of P on X determined by a extends to 
a representation of (9(U) on X. This is the content of the analytic function 
calculus theorem in one variable. 

We do not yet have nontrivial applications of the techniques of this 
section in the case of several free variables (although the analogous 
techniques for modules over the rc-variable polynomial algebra Pn were 
used in [11] to obtain a new development of the analytic functional 
calculus for several commuting operators). The difficulty is that we have, 
as yet, very little information about the family of all free analytic algebras 
on n generators for n > 1. For example, we have no analogue of the 
algebras 0(1/ n V) and 0(1/ u V) for a pair (9(U\ (9(V)\ in one variable 
these are, respectively, the minimal free analytic algebra in which (9(U) 
and (9(V) embed and the maximal free analytic algebra which embeds in 
both (9(U) and (9(V). We have no several-variable analogue of this natural 
lattice structure on the single variable free analytic algebras. It is not at 
all clear that such a lattice structure exists. Note that the algebra 0(F) 
with V = p(a\ used in the above argument, is the "smallest" free analytic 
algebra A on one generator satisfying A 1 X. If such a thing existed for a 
Banach module X over Fn9 its structure would undoubtedly provide nice 
invariants to associate with the operators al9...9an defining the module 
structure on X. 
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One final comment : We observed that the nonsingularity of an operator 
a on a Banach space X was equivalent to C0 -1 X, where X has the 
P-module structure generated by a and C0 is C with the P-module struc
ture generated by 0 e C. Thus, for a tuple of operators a = ( a l 5 . . . , an) on 
X, the relation C0 i . (X, a) between the right Fn-module C0 generated by 
(0 , . . . , 0) and the left F„-module generated by a might well be used as the 
definition of the statement that (al9...9an) is a nonsingular tuple of 
operators (in the free sense). This relation amounts to the solvability in 
L(X) of the system of equations 

a1b1 + • • • + anbn = 1, b{a} = öij9 

which we discussed in Example 2 of §5. 

REFERENCES 

1. R. Arens and A. P. Calderón, Analytic functions of several Banach algebra elements, 
Ann. of Math. (2) 62 (1955), 204-216. MR 17, 177. 

2. A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. 
Math. Soc. No. 16 (1955), 140 pp. MR 17, 763. 

3. L. Hörmander, An introduction to complex analysis in several variables, Van Nostrand, 
Princeton, N.J., 1966. MR 34 #2933. 

4. E. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. 
Soc. No. 11 (1952), 79 pp. MR 14, 482. 

5. H. Schaefer, Topological vector spaces, Macmillan, New York, 1966. MR 33 #1689. 
6. R. Schatten, A theory of cross-spaces, Ann. of Math. Studies, no. 26, Princeton Univ. 

Press, Princeton, N.J., 1950. MR 12, 186. 
7. J. L. Taylor, A joint spectrum for several commuting operators, J. Functional Analysis 

6(1970), 172-191. MR 42 #3603. 
8. , The analytic-functional calculus for several commuting operators, Acta Math. 125 

(1970), 1-38. MR 42 #6622. 
9. , Several variable spectral theory, Proc. Sympos. Functional Analysis (Monterey, 

Calif., 1969), Academic Press, New York, 1970, pp. 1-10. MR 42 #6623. 
10. , Homology and cohomology for topological algebras, Advances in Math. 9 

(1972), 137-182. 
H# 9 A general framework for a multi-operator functional calculus, Advances in 

Math. 9 (1972), 183-252. 
12. F. Treves, Topological vector spaces, distributions and kernels, Academic Press, New 

York, 1967. MR 37 #726. 
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, SALT LAKE CITY, UTAH 84112 


