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QUASI-ANALYTICITY AND SEMIGROUPS 

BY J. W. NEUBERGER1 

ABSTRACT. Four problems and their interrelationships are consid­
ered. These problems concern (1) quasi-analyticity conditions in terms 
of finite differences, (2) quasi-analyticity conditions for one-parameter 
semigroups of linear transformations, (3) generation (in the sense of 
S. Lie) of one-parameter semigroups of nonlinear transformations and 
(4) quasi-analyticity conditions for one-parameter semigroups of non­
linear transformations. The quasi-analyticity conditions in (2) and (4) 
are in terms of the degree of approximation of the identity by a semi­
group. In connection with (3) an infinitesimal generator and a corre­
sponding exponential formula are obtained without assuming differ­
entiability. 

1. This work deals with quasi-analyticity, with linear and nonlinear 
one-parameter semigroups of transformations and with certain relation­
ships between these subjects. If J is a connected set of real numbers, then 
a collection G of functions with common domain J is said to be quasi-
analytic provided no two members of G agree on an open subset of J. 

Suppose H is a Banach space. If C is a subset of H, a semigroup on C 
is a function T with domain [0, oo) such that 

(1) If A ^ 0 , then T(X) is a transformation from C to C, and 
(2) If s, t ^ 0, then T(t)T(s) = T(t + s) and T(0) is the identity transfor­

mation on C. 
If p is in C, then gp denotes the function from [0, oo) to C such that 

gp(X) = T(X)p for all A ^ 0 (gp is called a trajectory of T). If p is in C and 
ƒ is in H*9 then the composition fgp is denoted by zpf and is called a 
functional of a trajectory of T. If r ^ 0, then T is called r-quasi-analytic 
provided no two continuous functionals of trajectories of T agree on an 
open subset of (r/2, oo) unless they agree on all of (r/2, oo). If T is r-quasi-
analytic and r = 0, then Twill be called quasi-analytic. If gp is continuous 
for all p in C, then T is called strongly continuous. 

Quasi-analytic collections of real-valued functions have been studied 
by S. Bernstein, Carleman, Denjoy, Wiener, Beurling, de la Vallée Poussin, 
Mandelbrojt and others. Descriptions of Bernstein's work may be found 
in [3] and [37]. The reader is also referred to Carleman's book [6], to 
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the book of Paley and Wiener [33], Mandelbrojt's books [18], [19], 
de la Vallée Poussin's paper [38] and Beurling's lecture notes [1]. There 
seem to be few established relationships between the above works and 
the quasi-analyticity theorems of the present work although such rela­
tionships have been sought More will be said on this point later. 

Following are some examples of semigroups. A semigroup T is said 
to be linear if T(X) is a linear transformation for all X ̂  0. Otherwise T 
is called nonlinear. 

EXAMPLE 1. H = C = E 2? 

EXAMPLE 2. H 

X>0. 

X S 0, I x2 J in lx. 

EXAMPLE 3. H = R, C = [0,1], T(X)p = pie\ X ^ 0, p in [0,1]. 
EXAMPLE 4. H = R, C = [ -1 ,1] , 

r= x if - 1 ^ x s 0, 

T(X)x < = 0 if 0 ^ x ^ 2, 0 < x ^ 1, A ^ 0, 

1= x - X if 1 ̂  x ^ X. 

EXAMPLE 5. H = R,C = [0,1], T(X)x = x/(l + xX\ 0 ^ x ^ 1, X ̂  0. 
EXAMPLE 6. H = C = /2, {wj£i an increasing sequence of positive 

integers, 

x^os^ / l + y^mn^ 
-x^in^/ l + j^cosn^ 

EXAMPLE 7. H = C — space (under sup norm) of continuous real-
valued functions ƒ on ( - oo, 1] such that f(x) = 0 if x ^ 0. [T(A)/](x) 
= / ( x - A ) , x g M ^ 0 , / i n t f . 

EXAMPLE 8 (G. F. WEBB). H = C = C[0 !,. F(x) = x if x ^ 0, 2x if 
x < 0. [ 7W](x ) = F(A + r ! ( / (x ) ) ) , O ^ x ^ l , A ^ 0, ƒ in C[(U]. 

EXAMPLE.9. H = R, a ^ b, a9b>0, C = [ -1 ,1] , T(X)x = e~aA if 
0 ^ x ^ 1, e~bX if - 1 ^ x < 0, A ^ 0. 

2. Some long-known facts about linear semigroups are summarized 
in the following (cf. [11], [42]). 
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THEOREM 1. Suppose T is a strongly continuous semigroup of bounded 
linear transformations. Then, 

(1) limA_0(l/A)(T(/l) — I)p exists for all p in some dense subset of H 
(B denotes the transformation with domain all such p and Bp is this limit 
for p in DB). 

(2) There is A0 > 0 such that (I — XB)'1 exists and is a bounded linear 
transformation from H to H ij0 <J A ^ A0. 

(3) l im^^ (ƒ - Wri)B)~np = T(X)p for all A ^ 0 and all p in H. 

This theorem is a remarkable instance of algebraic and topological 
conditions leading to the existence of differentiability. In terms of this 
differentiability, and 'infinitesimal generator' B of T is defined. The 
semigroup T is then recovered from B by means of the exponential 
formula (3). 

In recent years there has been considerable success in generalizing 
Theorem 1 to the case of T nonlinear. If JFf is a Hubert space, C a convex 
subset of H and T nonexpansive (T(A) has Lipschitz norm not exceeding 
1 for all A ^ 0) then the theory is fairly complete. A recent paper of Brezis 
and Pazy [4] contains a good summary. More will be said about this 
theory later when another approach to the nonlinear theory is mentioned. 

Two quasi-analyticity theorems and one analyticity theorem for linear 
semigroups follow. 

THEOREM 2. If T is a strongly continuous semigroup of bounded linear 
transformations on H and liminfA_0 |T(A) — l\ < 2, then T is quasi-
analytic. 

THEOREM 3. Suppose T is a semigroup of bounded linear transformations 
on H and 

(1) If A0 > 0, then there is M so that |T(A)| ^ M for all A in [0, A0]. 
(2) There is a sequence {ô(q)}™=1 of positive numbers converging to 

0, s, Ô > 0 and r ^ 0 so that 

sup \(T(ô(q)) - ir\1,n £2-e, q=l,2,.... 

Then, T is r-quasi-analytic. 

THEOREM 4. Suppose that Tisa strongly continuous semigroup of bounded 
linear transformations from H to H and limsupA_0 |T(A) — l\ < 2. Then, 
each functional of a trajectory of T is real-analytic on (0, oo). Moreover, 
B(T(X)) is bounded for all A > 0 where B is the infinitesimal generator ofT 

Theorem 4 is found (essentially) in [25], It can now be obtained as a 
special case of a result of Beurling [2] or of Kato [14]. Theorem 2 is 
found in [26] and [29]. Theorem 3 is found in [29]. Earlier results in 
this direction are found in [15] and [22]. 
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Theorems 2 and 4 apply to Markov semigroups. Following D. G. 
Kendall [15, pp. 11, 19-21] suppose each of pip ij = 0,1,2, . . . , is a 
continuous function on [0, oo), p(/u + v) = Yak=oPiM)pkj{v\ Pip) = °> 
Y,f=0Pij(t) = 1, lim^o Pip) = àij> hi = 0,1,2,... . These are the transi­
tion probability functions for a Markov process. From these one defines 
a semigroup T on /x : 

(T(t)x)j = £ xffitjit), t = 0,; = 0,1,2,..., x in lx. 
i = 0 

As Kendall notes, \T(t) - l\ = 2(1 - #(0) where #(£) = Mi=0fU2f...pH{t)9 

t ^ 0. Denote lim sup^0 g{t) by T and lim inff_0 g(t) by y. Then the hypoth­
esis of Theorem 2 is satisfied if and only if T > 0 and the hypothesis of 
Theorem 4 is satisfied if and only if y > 0. 

3. Theorems 2 and 3 follow from some results which relate quasi-
analyticity with the study of finite differences. These results are noted here 
in some detail. 

If each of u and ö is a number, n a positive integer and ƒ a real or 
complex valued function whose domain includes [w, u + n<5], then 
Af(n; w,<5) denotes 

îo(î)(-ir*f(u + kô), 
the nth difference of ƒ from Mtow + nô. Observe that if |/(x)| ^ M for 
all x in [w, w + n<5], then one has the crude inequalities \Af(n; u9 S)\ ^ M2n 

and |A/(n;w,(5)|1/w ^ 2M1/M since £ ï = o© = 2n. Recall that if / is C(M) in 
some open set containing w, then Af(n;u,ô)/ôn -> f(n)(u) as (5 -• 0. The 
next two examples are intended to introduce Theorem 5. 

EXAMPLE 10. Suppose 

= JO, if 0 ^ t < 1/2, 
J(t) [ f - 1 / 2 , i f l / 2 < t = l . 

Some computation gives 

'2n - 2 
|Af(2n;0, l/2n)| = (l/n) { 

and so |Ar(2n;0, l/2n)\1/2n -+2 as n -> oo. 
EXAMPLE 11. Suppose 

0, if 0 S t ^ 1/2, 
( t -1/2) 2 , i f l / 2 < t g l . / W = w . _ , 2 

Then |A/(2n; 0, l/2n)| = 0, n = 2,3,4,... but 
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fin — 4\ 
\kf{2n- l;0,l/2n)| = (An - \)n~\n - l)"1) _ ), n = 2,3,4,... . 

So, if y < 1, then (supy<q/2n<1 \àf(q; 0, \/2n)\)ll2n -> 2 as n -• oo. For these 
examples, the crude upper bound mentioned above is, in a sense, attained. 
The essence of Theorem 5 is that this situation is typical for a wide class 
of functions. 

If x ^ 0, then [x] denotes the largest integer which does not exceed x. 

THEOREM 5. Suppose f is a continuous function with domain [0,1] so 
that f(t) = 0 if 0 ^ t ^ 1/2 and, if z > 1/2, then there is t in (1/2, z) such 
that f(t) =£ 0. If y < 1 and {ô(q)}™=1 is a sequence of positive numbers 
converging to 0, then 

l/[l/<5(<*)] 
lim <slft<i lA>;°><%))l 

No constructive argument for Theorem 5 is known. It is easy to see 
that 

lim sup ( sup \àf(n; 0, ô(q))\ I ^ 2, 
<j~>°° \y = nà(<b ^ i / 

assuming that lim sup^^^ ( ) < 2 leads by a long argument to a contra­
diction (see [21] and also [29]). Any information concerning just how the 
limit in Theorem 5 is achieved would almost certainly lead to substantial 
improvements in Theorems 2 and 3. 

A key lemma in the proof of Theorem 5 is the following inequality 
(a slight improvement of Lemma 4 of [21]) : 

Suppose that each of uj,s and t is a positive integer, u ^ t ^ s, each 
of au9..., as+j is a number and Av = YJ=U (?)(-1)""'^ v = t, s + 1, . . . , 
s + j . Denote \Av\/0 by Fv, v = t, s + 1, . . . , s 4- j , max{|att|,..., \as+j\} 
by M and max{Fs+ u . . . , Fs+j} by B. Then, 

•((s-t+j)---(s-t+ 1))/((S - M + j ) • • • (S - M + 1)) 

'2(5 - f + j) - T 

Suppose J is a connected set of numbers and r ^ 0 such that J contains 
an interval of length greater than r. Then Jr denotes {x\\_x — r/2, 
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x + r/2] a J} and, if G is a collection of functions with domain J, then 
Gr denotes the collection of all restrictions of members of G to J,. 

THEOREM 6. Suppose r and J are as above and suppose furthermore that 
G is a collection of continuous functions on J such that iff is in G, then 
there are M, £, ô > 0 such that 

\Af(n;u,S(q))\ ^ M(2 - s)n 

provided n, q are positive integers, u,u + nö(q) are in J and r ^ nô(q) 
^ r + ö. Then Gr is a quasi-analytic collection. 

Theorem 6 appears in [29] and in a sense is an improvement of 
Theorem B of [21]. Denote {ö(q)}™=l by G and denote by G(o\ J) the set 
of all continuous real-valued functions ƒ with domain J such that if x 
is in J, then there is an open interval J' containing x and M, s > 0 so 
that if u, v are in J' n J and v = u + nô(q) for some integers q and n, then 

\Af(n;u,ô(q))\èM(2-s)n. 

It follows from Theorem 6 that G(a9J) is a quasi-analytic collection. 
A number of questions about such quasi-analytic collections are 

unanswered: 
(1) Is G(cr, J) a ring (using pointwise multiplication)? 
(2) I f / i s in G(<7,J) and ƒ is known on a subinterval J' of J, how can ƒ 

be calculated on all of J ? 
(3) Is it true that if ƒ is a continuous function on J, then there exist 

sequences a' and o" of positive numbers converging to 0 so that 
ƒ = h + fi, h is in G(<7', J) and f2 is in G(<r", J)? 

For certain quasi-analytic collections in the literature, a problem 
similar to (2) has been solved (cf. [6]). For Bernstein's quasi-analytic 
collections (defined in terms of best approximation by polynomials) the 
question similar to (3) has been solved in the affirmative (cf. [37]). 
Question (1) is due to P. Porcelli (private communication). 

4. The question arises as to whether G(cr, J) contains other than real-
analytic functions. For certain choices of J and o the answer is yes. 
Members of G{a, J), for certain J and a, have been found which are not 
even twice continuously differentiable. Such functions have been exhibited 
by means of Fourier transforms and series. A relationship between Fourier 
analysis and the study of quasi-analyticity by means of finite differences 
is given by the following: 

Suppose a is a complex-valued function which is bounded variation 
on all of JR. Suppose also that 

ƒ(x) = Re P° eivx doc(v) for all x in R. 
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Then 

Af(n; u,8) = 

and hence 

IA/*; ii, ó)| S 
• o o 

\eiôv 

— oo 

(e,ôv - \fém daiv) 

1 I" \dx(v)\ = 2" r |sin(^y/2)|" |do(v)| 
J-oo 

for all u,ôin R and all positive integers n. 
Roughly, if a is constant on intervals of sufficient length about numbers 

v so that |sin(<5i;/2)| = 1, then for some e > 0, \Af(n; u, S)\ will be bounded 
by (2 — £)Mj_ oo \d<x(v)\ for all u in R, n = 1,2,... .An example illustrates 
this. 

Take a to be the nondecreasing step function on R so that a has jumps 
3"3P/2 at 3^p = i ? 2, . . . , and a has no other discontinuities. Choose 
a = {271/3*}^! and 

ƒ (x) = Re 

for all x'mR. Then, 

eivxda(v)= X (cos(x3"))/33p/2 

P = I 

|Af(w;u,27c/3«)|g 2W |sin(2rci>/(2 • 3«))|w |<fa(t?)| 

= 2" £ |sin(7i3p-g)|733p/2. 

But there is e > 0 so that if r is an integer—positive, negative or zero— 
then |2 sin 7r3r| ^ 2 — e. Hence 

|A>; u, 2TU/3«)| g (2 - e)M f 3" 3^ 2 , n, « = 1,2,... . 
P=I 

Hence the restriction of ƒ to [0,7] is in G(a9 [0,7]). But ƒ (and hence its 
restriction to [0,7]) is not C(2) (cf. [36, p. 53]). 

Suppose G is the collection of all functions h on [0, 7] for which there 
exists a real number sequence { a ^ } ^ such that Xp=ilapl c o n v e r g e s 

and ƒ (x) = £jL i fl
P

C0S 3px for all x in [0,7]. Then, as above, it may be 
shown by means of Theorem 6 that G is a quasi-analytic collection. 

Much more general quasi-analytic collections than the one indicated 
above can be constructed using Fourier series and integrals (cf. Theorem 12 
of [24]). This last mentioned result can be improved substantially starting 
with Theorem 5 of the present paper instead of Theorem 12 of [24]. 
Many of the collections of Fourier series or integrals which can be shown 
to be quasi-analytic using Theorem 6 can also be shown to be quasi-
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analytic using Theorem IV and Corollary 4.1 (Lecture 3) of [1]. In this 
connection see also [33], [38], [18]. It is remarked that Mandelbrojt in 
the preface to [18] credits de la Vallée Poussin and S. Bernstein with 
introducing Fourier series into the study of quasi-analyticity. 

Consider the following result of Beurling [2] (see also [1], [25]). 

THEOREM 7. Suppose/is a continuous real-valued function on [ — 4, 4] and 
that for some p in [3/2, 2), \Af(n; w, (v — u)/n)\ ^ pn ifu and v are in [ — 4,4], 
n = 1,2,... . Then ƒ can be extended analytically to the rhombus with 
vertices at ± 4, + 4ika2 where a = (2 — p)/4 and k is a number not depend­
ing on f or p. 

Beurling's argument is based on Fourier analysis. The question is raised 
as to whether Theorem 6 has a Fourier-analytic proof. The same question 
can be raised concerning Theorems 2 and 3. Theorem 4 is already a special 
case of Theorem IV of [2] whose argument may be described as Fourier-
analytic. 

D. Williams (private communication) raised the question as to whether 
Theorem 5 has an argument based on semigroup theory. It would also 
be interesting to have a Fourier-analytic argument for Theorem 5. 

The quasi-analytic collections considered in [21] were defined in terms 
of conditions on the finite differences of members of the collection. 
Theorem 7 implies that certain of the quasi-analytic collections in [21] 
contain nothing but analytic functions. 

D. G. Kendall in [15] defined quasi-analytic collections by means of 
conditions on some finite differences of its members. In [24] and [29] 
(and Theorem 6) Kendall's idea was extended to get quasi-analytic 
collections which contain nonanalytic members. 

5. For purposes of comparison one is reminded that for Ta semigroup 
of bounded linear transformations, limA_>0 \T(X) — l\ = 0 if and only if 
B, its generator in the sense of Theorem 1, is bounded. 

In Example 2, \T(X) — I\ — 1 for all X > 0 and so T satisfies the hypo­
thesis of Theorem 4. The generator B of T is given by 

B(X2) = (-2*2 J 

provided both points involved are in /x. 
In Example 6, if nk = k, k = 1,2,..., then \T(X) - I\ = 2 for all A > 0. 

Hence Tdoes not satisfy the hypotheses of either Theorem 2 or Theorem 4. 
That it does not satisfy the hypothesis of Theorem 4 can be argued another 
way. Each T(X\ X ̂  0, has a bounded inverse defined on all of /2. If the 
hypothesis of Theorem 4 were satisfied, then BT(X) would be bounded 
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for all A > 0. But then B{T{X){T{X)))~l would be bounded too, a contra­
diction since B is unbounded : 

provided both points involved are in /2. 
However, if nk = 3k, k = 1,2,..., then lim infA 0̂ \T(X) — I\ < 2, since 

if q is a positive integer, then 

\T(2n/3q) - ƒ | = _sup |exp(27ri3*/3«) - 1| ^ sup |exp(27ci3r) - 1| 

= |exp(27ri/3) - 1| < 2. 

In Example 7 (see [29]) it may be seen that if n is a positive integer, 
ö > 0 and nô ^ 3, then 

\(T(ô)-I)f'"S2V»("/ô^ > 1 as J? -• oo, 

from which it follows that l im^^ \(T(ö) - If\1/n ̂  1 and so the hypo­
thesis of Theorem 3 is satisfied. This may be contrasted with the fact that 
lim^o \T(S) — ƒ | = 2. It is mentioned that the generator B for this 
example is given by Bf = — ƒ' iff and ƒ ' are in H. 

Observe that if T is a semigroup of bounded linear transformations on 
H, p is in H, ƒ is in H*, u, (5 ^ 0, then 

| \> ;« ,5 ) | ^ | / | l l p | | |T (« ) | | (T (5 ) - / ) - | . 

This gives a relationship between sizes of differences of functional of 
trajectories of T and the degree of approximation of the identity by the 
semigroup T. This inequality provides a basis for a proof of Theorems 2 
and 3 by means of Theorem 6. It may also be used as part of a proof of 
Theorem 4 by means of Theorem 7. 

Recent work of Pazy [32] uses a weaker condition than in Theorem 4 
and still concludes that BT(X) is bounded for all k > 0 but that it need 
not be true that each functional of a trajectory of T is analytic. Other 
references concerning relationships between properties of semigroups 
and the nature of the approximation of the identity by the semigroup are 
[5], [41], [9] and [11, §10.7]. 

6. The following theorem for nonlinear semigroups is suggested by 
two developments. One is Theorem 1 and the other is found in certain 
work of Sophus Lie (cf. [32], [12]). For a certain kind of one-parameter 
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group of nonlinear transformations on a finite dimensional space Hl9 Lie 
considered a representation as a group of linear transformations on a 
space Qt of real-valued functions on H1. Lie seems to assume differen­
tiability (even analyticity) of the nonlinear group as well as analyticity 
of the members of Qx. In the present theorem, one has semigroups instead 
of groups, Banach spaces instead of finite dimensional spaces and no 
differentiability is assumed. 

Denote by C a bounded subset of the Banach space H. Denote by K a 
Banach space. Denote by T a nonlinear semigroup on C and by Q0 the 
set of all bounded functions ƒ from C to K such that the composition 
fgp is continuous for all p in C. A subspace Q of Q0 may have the follow­
ing property (Q0 itself does): 

(*) Q is closed under taking Laplace transforms, i.e., if/ is in Q,X > 0 
and 

h(x) = (1/A) H due~u/xf(T(u)x) 

for all x in C, then h is in Q. 

THEOREM 8. If Q is a subspace {not necessarily complete) satisfying (*) 
and A is the set of all (ƒ, h) inQ x Q such that 

lim (l/A)(/(T(A)x) - f{x)) = h(x) 
A->0 

for all x in C, then (I — ÀA)~x exists, has domain all ofQ, \(I — AA)'1] ^ 1, 
and 

lim ((/ - (X/n)Aynf)(x) = f(T(X)x) 
«-•oo 

/or a//ƒ in Q, x in C, X §; 0. 

See [28] for a proof. See [27] for a related development which gives 
more information about A. Note that if lim^oüMH^W* — x) = Bx 
exists and the member ƒ of Q is Fréchet differentiable, then (Af)(x) 
= f\x)Bx. This illustrates a close relationship between the two kinds of 
generators. 

The question is raised: Under what conditions on A does it arise from 
a semigroup as in Theorem 8? 

As a first step in trying to develop a theory of differential equations for 
nonlinear semigroups, one tries to differentiate a semigroup at 0 and then 
reconstruct the semigroup from the generator by means of an exponential 
formula. This step is, for strongly continuous linear semigroups, illustrated 
by Theorem 1. For nonlinear semigroups this has been accomplished for 
nonexpansive strongly continuous semigroups on Hubert space (cf. 
[16], [13], [10], [4]) but not, for example, on C[0fl]. See, for example, 
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[71 [81 [20], [35], [40], [30], [23] for developments for more general 
spaces. In Webb's example from [39] (Example 8 here) on C[0fl]i 

limA_>0(l/k)(T(X)p — p) = Bp exists (even in the pointwise sense) and is a 
member of C[0>1] only for p a nonnegative or a negative member of C[0jl] 

((Bp)(x) = 1 if p ^ 0, =2 if p < 0, p in C[(U], x in [0,1]). 
Theorem 8 can be interpreted to give a modified sense of differentiability 

for semigroups on C[0tl] (as well as on much more general spaces) so that 
a generator, from which the semigroup is recoverable, can be defined in 
terms of this differentiability. Take C to be a bounded subset of C[0>1] and 
Ta semigroup on C such that if p is in C, x is in [0,1] and z(t) = (T(t)p)(x) 
for all t ^ 0, then z is continuous (this is a weaker assumption than that 
of strong continuity of T). Take K = R, the real numbers, and take Q0 

as above for this choice of C, T and X. If x is in [0,1] denote by fx the 
member of Q0 such that/x(p) = p(x) for all p in C. Take g to be the smallest 
subspace of Q0 satisfying (*) and containing {fx}xe[0,iy 

For X > 0 denote by h the transformation from Q to Q such that if 
/ i s in Q, then 

ihf)(p) = (1/A) due-^f(T(u)p) 
o 

for all p in C. One can see that Q is composed of {fx}xe[0,i], hi'" hjx 
for ku..., kn > 0,x in [0,1], n = 1,2,..., as well as all finite linear com­
binations of these elements. If/ is in Q,p in C and A > 0, then (hf)(p) is 
an average (weighted) of f(T(t)p) taken over all t ^ 0. Moreover, 

lim(/A/)(p) = /(p).. 

Now it may be seen that if ƒ is in g and À > 0, then IA ƒ is in D^ and 
A(/A/) = (l/X)(hf - ƒ). Actually, (/ - AA)"1 = JA. 

In particular, if A > 0 and x is in [0,1], then hfx is in DA and so 

\im(l/t)l(hfx)(T(t)p) - (Ijy(p)] 

= lim(l/A) T dne-^l/f)[(r(f + ii)p)(x) - (T(u)p)(x)-] = (A(/A/J(p) 
f^° Jo 

exists for all p in C. This illustrates a particularly close analogy between 
the way A is defined and the way one attempts to define a generator B. 
The domain of B is all p in C such that 

lim(lA)[T(t)p-p] 

exists in C [01] (and hence 

lim(l/0[(T(r)p)(x) - p(x)] = lim(lA)(/^TWp) - fM 
t-*0 t->0 
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exists for all x in [0,1]). 
In Webb's example, B does not seem adequate for the reconstruction 

of T; from Theorem 8, T may be constructed from A by 

lim [(/ - Wn)A)-%-}(p) = fx{T{X)p) = (T(X)p)(x) 
n-*ao 

for all k ^ 0, p in C and x in [0,1]. 

7. An example of a quasi-analyticity theorem for a nonlinear semigroup 
T is Theorem 9. The idea here is to represent T as a linear semigroup on 
an appropriate space of functions and then apply Theorem 3. 

THEOREM 9. Suppose K = H,T is a semigroup on the bounded subset C 
of H,Q is the smallest subspace of Q0 containing {T(A)}Ai>0

 and {S(X)f){x) 
= f(T(X)x) for all ƒ in Q, x in C, X ^ 0. Then T is quasi-analytic if 

lim inf 15(A)- Jl < 2. 

Some of the examples shed light on the status of the hypothesis of this 
theorem. 

In Example 4, the space Q may be seen to be dense in the space (using 
sup norm) of all continuous real-valued functions ƒ on [ — 1,1] so that ƒ 
is linear on [-1,0] and /(O) = 0. 

In Example 3, Q is dense in the space (under sup norm) of all continuous 
functions on [0,1] which are 0 at 0. 

In Example 5, using a theorem of Porcelli [34], Q is dense in the space 
(under sup norm) of all continuous functions on [0,1] which are 0 at 0. 

In each of these examples, if S is defined as in Theorem 9, it follows that 
lim^o \S(X) — ƒ | = 2. Roughly, this occurs since the space Q in each 
instance is so large. 

In Example 9, however, Q is all functions on [ — 1,1] so that /(O) = 0 
and ƒ is linear on both [— 1,0] and [0,1]. Here lim infA_0 |S(A) — l\ < 2. 

An interesting problem, perhaps suggested by the above, is that of 
classifying nonlinear semigroups according to properties of the corre­
sponding minimal space Q which satisfies property (*). 
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