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The present note summarizes some results in a new algebraic topological 
approach to set valued transformations and initiates a theory of their 
fixed points applicable to the case that the images are not acyclic. These 
ideas extend to min max theorems where again a basic generalization is 
obtained [2]. Our developments are based on the existence of homo-
morphisms of certain homology groups, in a crucial range only, induced 
by suitably defined multivalued homotopies (cf. Theorems 1 and 3 
below). 

Let X and Y be paracompact spaces and suppose h : I x ƒ-• 7 isa 
set valued uppersemicontinuous (use) transformation. Let T(/i) be the 
graph 

r(fc) = U {(x,s,y)\yeh(x9s)} c X x I x Y. 

Let pt be the projection of T(h) onto X, p2 the projection onto Y and Px 

the projection of F(h) onto X x I. 
For each s e ƒ the singular set Sp(s) is defined by 

Sp(s) = {x\Hrh(x9 s)#0 for some r < p) 

where ff * refers to Alexander reduced cohomology over the coefficient 
field Q and closed support family. Write 

S'=U Sp(s) . 
sel 

We say px is almost p solid, ApS, if for any neighborhood N(y0) in a 
suitable neighborhood base at y0 e Y, there is at most a finite subset of 
Sp, independent of s, such that h(x, s) n N(y0) ^ 0 , x e Sp, does not imply 
h(x, s) G N(y0) and h(x, s) is uniformly use for fixed x. 

We write ƒ ~ M g if /is, s e I, is acyclic for p ^ m ^ q ^ oo and p f̂c) 
is ApS. The basic theorem for our purpose is 

THEOREM 1. If f ~ pq g,q ^ p + 2 and ft describes the homotopy then 
h{m)*:Hm{Y) - tfw(X x ƒ) exists for p + 2 ^ m S q and /*(m) = g*(m) 
/or ftos range o/ m values. 

If X and Y are compacta, a condition designated by (C) is 
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Sp is denumerable and for arbitrary positive e, there is at most a finite 
subset of Sp for which diam f(x) > e. As a consequence of Theorem 1 
restricted to compact spaces there results 

THEOREM 2. Let ƒ be an uppersemicontinuous set valued self transfor­
mation of then + ldisk,Dn+\n > 3.LetSn~2 be the singular subset defined 
by the condition that f(x) is a convex set for xëSn~2 and for xeS w ~ 2 , 
ƒ (x) is a finite union of convex sets of which at most n — 1 are of dimension 
greater than n — 3. Require also that (C) be satisfied. Then ƒ has a fixed 
point. 

Another type of homotopy theorem is also available. Thus for a set 
valued transformation ƒ on X to Y we grade the singular set by 

^«{x f fT /MqbO}. 

Let dr = dim /^ the maximum covering dimension of sets A closed in 
Y and contained in \ir. Similarly for ft, 

Vr = {(x,s)\Hrh(x,s)$0}. 

Let ör = dim Vr be the maximum covering dimension of sets A closed in 
X x I and contained in Vr. Let 

IT = 1 + sup (r + ôr). 
Vr+0;r<q 

The notation ƒ ~pnqg is used if there is a use transformation ft, said to 
describe the homotopy with Vr = 0 , p ^ r ^ q and p ^ Ft < q. 

The correspondent to Theorem 1 is 

THEOREM 3. If f ~pnq g and ft describes this homotopy with f g and 
ft use then if q ^ II + 2, ft*(m) exists and ƒ *(m) = g*(m) /or II 4- 1 ^ m 
<q. 

For the case that ar = 0 for all r < p, Theorem 3 includes Theorem 1 
if the spaces are compacta. (However this is not true if either the compact­
ness or the metrizability restrictions are dropped as can be shown by 
suitable examples.) Accordingly instead of Theorem 2 we can assert 

THEOREM 4. Let f be a use transformation on Dn+i to Dn+1. Let S be the 
singular set (J Vr with dim S = d. Suppose fir = 0 for r^n — 3~d = r. 
For x e S, ƒ (x) is convex. For x e S, ƒ (x) is the finite union of convex sets 
with at most f + 1 of dimension greater than f — 1. Then f has a fixed point. 

The results above have immediate application to the central theorem 
of game theory, namely, the min max theorem. Let X and Y be convex 
bodies in Rk and Rl and let f be a real valued (continuous) map on X x Y. 
A saddle point or min max point x0, y0 is defined by 
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Min ƒ (x°, y) = ƒ (x°, y°) = Max ƒ (x, y°). 
yeY xeX 

Define 

M(y) = {x\f(x,y) = Max ƒ(*,)/)} c X, 

tf(x) = {y|/(x,y) = Min/(x,y)} c 7. 

Let g(x, y) be the set valued transformation on X x Y to X x Y defined 
by 

g(x, y) = M(y) x N(x). 

Our new type of saddle point theorem is 

THEOREM 5. Suppose M and N are use with singular sets 

s(X) = [j fir(x\ s(y)-Uft(n 
r r 

Write d(X) = dim S(X\ d(Y) = dim S(Y). Suppose ixr{X) = 0 for r ^ p 
and that dX ^ k — p — 3 and suppose too that fir(Y) = 0 /or r ^ q and 
that dY <*l - q-3.Forxë S(X), N(X) is convex and for x e S(X\ N(x) 
is a finite union of convex sets at most p of which are of dimension at least 
p — 1. For yëS(Y), M(y) is convex and for y e S(Y% M(y) is a finite union 
of convex sets at most q of which are of dimension at least q — 1. Then there 
is a saddle point. 

Detailed expositions and proofs of the results above will be given in 
[1] and [2]. 
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