SET VALUED TRANSFORMATIONS

BY D. G. BOURGIN

Communicated by Morton Curtis, December 2, 1971

The present note summarizes some results in a new algebraic topological approach to set valued transformations and initiates a theory of their fixed points applicable to the case that the images are not acyclic. These ideas extend to min max theorems where again a basic generalization is obtained [2]. Our developments are based on the existence of homomorphisms of certain homology groups, in a crucial range only, induced by suitably defined multivalued homotopies (cf. Theorems 1 and 3 below).

Let X and Y be paracompact spaces and suppose $h: X \times I \rightarrow Y$ is a set valued uppersemicontinuous (usc) transformation. Let $\Gamma(h)$ be the graph

$$\Gamma(h) = \big(\big) \{(x, s, y) | y \in h(x, s)\} \subset X \times I \times Y.$$

Let p_1 be the projection of $\Gamma(h)$ onto X, p_2 the projection onto Y and P_1 the projection of $\Gamma(h)$ onto $X \times I$.

For each $s \in I$ the singular set $S^{p}(s)$ is defined by

$$S^{p}(s) = \{x | H^{r}h(x, s) \not\approx 0 \text{ for some } r < p\}$$

where H^* refers to Alexander reduced cohomology over the coefficient field Q and closed support family. Write

$$S^p = \bigcup_{s \in I} S^p(s) \; .$$

We say p_1 is almost p solid, ApS, if for any neighborhood $N(y_0)$ in a suitable neighborhood base at $y_0 \in Y$, there is at most a finite subset of S^p , independent of s, such that $h(x, s) \cap N(y_0) \neq \emptyset$, $x \in S^p$, does not imply $h(x, s) \in N(y_0)$ and h(x, s) is uniformly use for fixed x.

We write $f \sim_{pq} g$ if $h_s, s \in I$, is acyclic for $p \leq m \leq q \leq \infty$ and $p_1(h)$ is ApS. The basic theorem for our purpose is

THEOREM 1. If $f \sim_{pq} g, q \geq p+2$ and h describes the homotopy then $h(m)^*: H^m(Y) \to H^m(X \times I)$ exists for $p+2 \leq m \leq q$ and $f^*(m) = g^*(m)$ for this range of m values.

If X and Y are compacta, a condition designated by (C) is

Copyright © American Mathematical Society 1972

AMS 1970 subject classifications. Primary 54C60, 54H25, 49A40; Secondary 55C20.

Key words and phrases. Set valued transformation, uppersemicontinuous, paracompact, graph, homotopy, almost p solid, Alexander cohomology, min max.

 S^p is denumerable and for arbitrary positive ε , there is at most a finite subset of S^p for which diam $f(x) > \varepsilon$. As a consequence of Theorem 1 restricted to compact spaces there results

THEOREM 2. Let f be an uppersemicontinuous set valued self transformation of the n + 1 disk, D^{n+1} , n > 3. Let S^{n-2} be the singular subset defined by the condition that f(x) is a convex set for $x \in S^{n-2}$ and for $x \in S^{n-2}$, f(x) is a finite union of convex sets of which at most n - 1 are of dimension greater than n - 3. Require also that (C) be satisfied. Then f has a fixed point.

Another type of homotopy theorem is also available. Thus for a set valued transformation f on X to Y we grade the singular set by

$$\mu_r = \{x | H^r f(x) \not\approx 0\}.$$

Let $d_r = \dim \mu_r$ the maximum covering dimension of sets A closed in Y and contained in μ_r . Similarly for h,

$$V_r = \{(x, s) | H^r h(x, s) \not\approx 0\}.$$

Let $\delta_r = \dim V_r$ be the maximum covering dimension of sets A closed in $X \times I$ and contained in V_r . Let

$$\Pi = 1 + \sup_{V_r \neq \emptyset; r < q} (r + \delta_r).$$

The notation $f \sim_{p \Pi q} g$ is used if there is a usc transformation h, said to describe the homotopy with $V_r = \emptyset$, $p \leq r \leq q$ and $p \leq \Pi < q$.

The correspondent to Theorem 1 is

THEOREM 3. If $f \sim_{p \Pi q} g$ and h describes this homotopy with f, g and h use then if $q \ge \Pi + 2$, $h^*(m)$ exists and $f^*(m) = g^*(m)$ for $\Pi + 1 \le m < q$.

For the case that $\delta_r \equiv 0$ for all r < p, Theorem 3 includes Theorem 1 if the spaces are *compacta*. (However this is not true if either the compactness or the metrizability restrictions are dropped as can be shown by suitable examples.) Accordingly instead of Theorem 2 we can assert

THEOREM 4. Let f be a usc transformation on D^{n+1} to D^{n+1} . Let S be the singular set $\bigcup V_r$ with dim S = d. Suppose $\mu_r = \emptyset$ for $r \ge n - 3 - d = \overline{r}$. For $x \in S, f(x)$ is convex. For $x \in S, f(x)$ is the finite union of convex sets with at most $\overline{r} + 1$ of dimension greater than $\overline{r} - 1$. Then f has a fixed point.

The results above have immediate application to the central theorem of game theory, namely, the min max theorem. Let X and Y be convex bodies in \mathbb{R}^k and \mathbb{R}^l and let f be a real valued (continuous) map on $X \times Y$. A saddle point or min max point x_0, y_0 is defined by

598

$$\min_{y \in Y} f(x^0, y) = f(x^0, y^0) = \max_{x \in X} f(x, y^0).$$

Define

$$M(y) = \{x | f(x, y) = \underset{x \in X}{\operatorname{Max}} f(x, y)\} \subset X,$$
$$N(x) = \{y | f(x, y) = \underset{y \in Y}{\operatorname{Min}} f(x, y)\} \subset Y.$$

Let g(x, y) be the set valued transformation on $X \times Y$ to $X \times Y$ defined by

$$g(x, y) = M(y) \times N(x).$$

Our new type of saddle point theorem is

THEOREM 5. Suppose M and N are usc with singular sets

$$S(X) = \bigcup_r \mu_r(X), \qquad S(Y) = \bigcup_r \mu_r(Y).$$

Write $d(X) = \dim S(X)$, $d(Y) = \dim S(Y)$. Suppose $\mu_r(X) = \emptyset$ for $r \ge p$ and that $dX \le k - p - 3$ and suppose too that $\mu_r(Y) = \emptyset$ for $r \ge q$ and that $dY \le l - q - 3$. For $x \in S(X)$, N(X) is convex and for $x \in S(X)$, N(x)is a finite union of convex sets at most p of which are of dimension at least p - 1. For $y \in S(Y)$, M(y) is convex and for $y \in S(Y)$, M(y) is a finite union of convex sets at most q of which are of dimension at least q - 1. Then there is a saddle point.

Detailed expositions and proofs of the results above will be given in [1] and [2].

BIBLIOGRAPHY

1. D. G. Bourgin, Cones and Vietoris-Begle type theorems, Trans. Amer. Math. Soc. (to appear). 2. _____, Fixed point and min-max theorems, Pacific J. Math. (to appear).

2. ———, Fixed point and min-max theorems, Pacific J. Math. (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HOUSTON, HOUSTON, TEXAS 77004

1972]