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ABSTRACT. It is proven that the set of all (bounded linear) operators 
on a complex infinite dimensional Banach space having disconnected 
spectra is an open uniformly dense subset of the algebra of all operators. 

In [3, Problem 8], P. R. Halmos asked whether the set of all reducible 
operators in a complex infinite dimensional separable Hubert space 2f? 
is uniformly dense in the algebra S£(3tf) of all (bounded linear) operators 
on 2tf. In the present note we answer affirmatively a related question: 

Is the set of all operators on a Banach space X having nontrivial 
complementary hyperinvariant subspaces dense in JSf (^)? (Recall that a 
subspace Ji of SC is hyperinvariant for Te£?(SC) if AJta Jt, for all 
Ae£?(SC) commuting with T [1]. Here and in what follows, subspace 
means closed linear manifold.) 

Moreover, we proved the following stronger (see [4]) result: 

THEOREM. Let 3C be a complex infinite dimensional Banach space and 
let TeS£{$£\ Then, given any s > 0, there exists an Ae£?{S£) such that 
(1) rank (A) = 1 ; (2) \\A\\ < e, and (3) the spectrum of T + A is discon
nected. 

PROOF. Let a(T) (E(T)9 resp.) denote the spectrum (essential spectrum, 
resp.) of T. 

Let A0 be any point of E(T) such that ReA0 = max{ReA;Ae£;(T)}. 
Then, for every compact operator K9 A0 e E(T + K) = E(T) a o{T + K\ 
and iLfollows from [4, Theorem 1 ] that, if there exists a A € a{T + K) such 
that Re A > Re A0, then a(T + K) is disconnected, A is an isolated point 
of a{T + K) such that (T + K - X)n$£ is closed for every n ^ 0 and, if 
^ - Pi?= i(T + K - X)n9£ and JT = closure{U?= i ker(T + X - A)w}, 
then dim Jf = d i m ^ / ^ ) < oo. 

Therefore, to complete the proof, it suffices to find an A satisfying (1), 
(2) and such that A0 + y e a(T + A) for some y, 0 < y < e/2. 

Since A0ebdry<r(T), there exists an x e f such that ||x|| = 1 and 
|| ( T - A0)x|| < g/2 (see [2, Chapter 7]). By Hahn-Banach theorem, there 
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exists a continuous linear functional ƒ on X such that f(x) = || ƒ || = 1. 
Define Pe &(X) by Py = f(y)x; then ||P|| = 1. If y eX is a unit vector, 
then y can be written as y = OLX + z, where a is a complex number, 
|a| ^ 1, and zeker(/) = ker(P). 

For each y, 0 < y <e/2, define TyeJSf(^)by Ty= T(J-P) + (A0 + y)P; 
then 

(Ty - T)y = [T(I - P) + (A0 + y)P - r]y - (Ao + y - T)Py 
= a(A0 + y - 7>. 

Hence Ay = Ty - T = (>10 + y - T)P has rank one and 

\\Ay\\ = sup{||(Ty - T)y\\ : ||y|| = 1} < e/2 + s/2 = 8. 

Clearly, X0 + y is an eigenvalue of Ty and therefore A0 + ye<r(ry). 
The proof is complete. 

REMARK. If Jt and JT are defined as above (for A = A0 + y and Ty 
= T + Ay), then ^ , Jf are hyperinvariant subspaces of T such that 
#* = Jf © ^ ; moreover, if y is small enough, then dim Jf = dim XI Jt 
= 1. With minor modifications of the same argument it is possible to show 
that, given Te £P{X) and e > 0, there exists a compact operator K such 
that ||X|| < e and o(T + K) contains a sequence {Xk:k = 1,2,...} of 
isolated eigenvalues associated with hyperinvariant subspaces Jfk> Jtk 

(defined as above) such that X = Jtk® Jfk and &x&Jfk = dim(X/J?k) 
= 1, for all k. From these results and [4, Theorem 3], we obtain the 
following: 

COROLLARY. (1) The set of all TeJ?(X) such that a(T) is disconnected 
is a uniformly dense open subset of£?(X). 

(2) The set of all Te Se{X) such that, for each n (n = 1,2,3,...), T has 
complementary hyperinvariant subspaces jVn9 Mn satisfying 

dim Jfn = dim(X/Jin) = n, 
is dense in J?(X). 
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