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In [4] a Weinstein-Aronszajn multiplicity theory for embedded eigen­
values arising from a certain type of "resonance" was developed. The 
results announced here continue the work of [4], and generalize results of 
[2] and [3] to embedded eigenvalues of arbitrary finite multiplicity m, and 
to perturbations of infinite rank. In particular, we are able to discuss 
certain operators of quantum mechanics. A notable feature of the case 
m > 1 is the appearance of Puiseux series for the resonances, in analogy 
to their appearance in the perturbation theory of isolated eigenvalues of 
nonselfadjoint operators [6, Chapters 2 and 7]. 

1. Puiseux series for resonances. Let T be a selfadjoint operator on a 
separable Hubert space Jf, with resolvent G(z) = (T — z)~1, and let A0 be 
a point eigenvalue of Tof finite multiplicity m. Denote by P the orthogonal 
projection on ker(T — A0). Let A and B be bounded commuting self-
adjoint operators on Jf, and define 

H(K) = T + KAB. 

For real K, H(K) is selfadjoint and we define R(z, K) = (H(K) — z)"1 . Let 
Q be a neighborhood A0 in the complex plane, and assume that the 
operator Q(z) = AG(z)B is bounded and has meromorphic continuations 
Q±(z) from Q± = {zeQ: lm z > 0} to Q. There is then a simple pole of 
Q+(z) at A0 with residue APB. The functions Q+{z) and Q~(z) will not 
agree on Q if the eigenvalue X0 is embedded in the continuous spectrum 
of T. The operator 

Q1(Z,K) = AR(Z,K)B 

also has meromorphic continuations Qf(z, K) given by 

I -KQ1(Z,K)= [ ƒ+ fcQ(z,ic)r1. 

It is the poles of Qt(z, K) that we refer to as the resonances of this perturba­
tion problem. 

The following was proved in [4, §5]. 
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THEOREM 1. There is an analytic function A(z9k) on a polydisc {{z9k): 
\z — À0\ < öl9 \K\ < ô2} such that 

(a) for \K\ < b2, A(z, K) has exactly m zeros ZX(K),. .. ,zm(K) (repeated 
according to multiplicity) in \z — A0| < ôl9 which are precisely the poles of 
Qt(z, K) in \z — À0\ < b2. For K = 0, Zj(0) = A0 (j = 1 , . . . , m). 

(b) If for some real K, ZJ(K) is real, then ZJ(K) is an eigenvalue ofH(K) of 
multiplicity equal to the multiplicity mJ(K) ofzfa) as a zero of A(z, K). 

The next theorem discusses the dependence of ZJ(K) on K. 

THEOREM 2. The resonances Z^K),..., ZW(JC) may be labeled so that each 
ZJ(K) has a Puiseux series expansion in K. If 

Zj(K) = X0 + OL^K11* + a2a)2jK2lp + • • • {j = 1 , . . . , p) 

is a given Puiseux cycle of resonances, where co is a primitive pth root of 
unity, then either the series has the form 

ZJ(K) = l 0 + V + , , , + a2nPK2n + d2np+1œ
jKi2n+1),p + • • • 

where À0, ap,..., oc(2n_1)p are real and Im a2np > 0; or p — 1 and all the 
coefficients an are real. 

Moreover, the multiplicity m^k) is independent of K for K # 0 and 
sufficiently small, and is the same for each element ZJ(K) of a given Puiseux 
cycle. 

In particular, if ZJ(K) belongs to a Puiseux cycle with p ^ 2, then ZJ(K) 
is not real for all sufficiently small K # 0. Thus any actual embedded 
eigenvalues of H(K) are analytic. 

COROLLARY. For real K / 0 sufficiently small, the multiplicity of point 
eigenvalues in the interval (À0 — ôl9 X0 + èx) is independent of K. If ZJ(K) 
is real for all sufficiently small K, then ZJ(K) is analytic in K. 

An example can be given in which an eigenvalue of multiplicity m = 2 
gives rise to a nonanalytic Puiseux expansion in powers of K1/2. The 
perturbation AB in this example has rank 4. 

Let (f)l,...,(j)m be an orthonormal basis of P^f in which the selfadjoint 
operator PABP on PJ f is diagonal. 

THEOREM 3. If the eigenvalues A1,...,Am of the operator PABP on PJt 
are all distinct, then ZJ(K) (j = I,... ,m) are analytic in K, and 

ZJ(K) = A0 + KÀJ + K^QÏttoJAtj, Bcfij) + 0(K3) (j = 1 , . . . , m), 

where 

Q;(z) = Q+(z)-(X0-z)-iAPB 
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is the analytic continuation of AG(z)PcB to a neighborhood of /l0, and 
PC = I-P. 

For real JC, this implies that to a first approximation 

- I m ZJ(K) = nK2[d(E(X)PcV(j)p V<t>j)/dX]x=ÀO (j = 1 , . . . , m) 

where V = AB and T = ƒX dE(k). This result is known to physicists as 
FermVs Golden Rule. 

2. Spectral concentration. The proof of the following result on spectral 
concentration involves a grouping of the resonances into "clusters" in 
such a way that each cluster behaves asymptotically like a single simple 
pole of Qî(z, K) (cf. the construction in [5]). 

THEOREM 4. Forj = 1 , . . . , m and K real, choose ÔJ(K) such that ÔJ(K) = o(l) 
and Im ZJ(K) = O(ÔJ(K)) as K - • 0. Let 

m 

S(K) = [j {t:Re ZJ{K) - ÔJ(K) < t < Re ZJ(K) + <5/K)}. 

IfH(K) = jXdEK(À\then 

P = st-lim f dEK{X). 
K->0 J 

S(K) 

3. The Auger phenomenon. The results above may be applied to the 
Schroedinger operator 

(*) H(K) = - A + Vx(x) + V2(y) + KV3(X - y) 

acting on functions u(x, y) e L2(R6\ where x, y e R3 and A is the 6-dimen-
sional Laplacian. The functions V^x) are assumed to be measurable on 
R6 and to satisfy 

\VJLx)\ Sce~«M (i= 1,2,3). 

One may describe H(K) as the Hamiltonian of a helium-like atom (with 
short range potentials), and the phenomenon discussed here is then 
analogous to the Auger effect. 

The boundedness assumption on A and B can be weakened sufficiently 
to include potentials Vt(x) which are locally L2, and, in particular, the 
Yukawa potential. 

Very recently, Simon [7] has announced an analyticity result, for simple 
multiplicity (m = 1), which applies to operators of the type (*) where 
V{(x) are analytic functions of |x|, and includes, in particular, the Coulomb 
case. His work is based on results of Balslev and Combes [1]. 
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