THE CONSTRUCTION OF AN ASYMPTOTIC CENTER WITH A FIXED-POINT PROPERTY¹

BY MICHAEL EDELSTEIN

Communicated by W. Fuchs, August 16, 1971

ABSTRACT. Given a bounded sequence $\{u_n: n = 1, 2, ...\}$ of points in a closed convex subset C of a uniformly convex Banach space, c_m denotes the point in C with the property that among all closed balls centered at points of C and containing $\{u_m, u_{m+1}, ...\}$ the one centered at c_m is of smallest radius. It is shown that the sequence $\{c_m: m = 1, 2, ...\}$ converges (strongly) to a point $c \in C$ called the asymptotic center of $\{u_n\}$ with respect to C. Further, for a class of mappings f of C into itself, which contains all nonexpansive mappings, f(c) = c whenever an $x \in C$ exists such that $f^n(x) = u_n$, n = 1, 2, ...

1. Introduction. Let C be a closed convex set in a uniformly convex Banach space X. (Recall that X is called uniformly convex if the modulus of convexity

$$\delta(\varepsilon) = \inf\{1 - \frac{1}{2} \|x + y\| : \|x\|, \|y\| \le 1, \|x - y\| \ge \varepsilon\}$$

is positive in its domain of definition $\{\varepsilon: 0 < \varepsilon \leq 2\}$.) Given a bounded sequence $\{u_n: n = 1, 2, ...\}$ in the set C, define

(1)
$$r_m(y) = \sup\{||u_k - y|| : k \ge m\} (y \in X).$$

It is well known, and easily proved, that a unique point $c_m \in C$ exists such that

(2)
$$r_m(c_m) = \inf\{r_m(y) : y \in C\} = r_m.$$

Clearly $r_m \ge r_{m+1}$ and $r_m \ge 0$ for all m = 1, 2, ... so that $\{r_m : m = 1, 2, ...\}$ converges to $r = \inf\{r_m : m = 1, 2, ...\}$. We note that if r = 0 then, as can be readily verified, the sequence $\{u_n\}$ converges.

2. The asymptotic center.

DEFINITION. If $\{c_m\}$ converges then $c = \lim c_n$ is called the asymptotic center of $\{u_n\}$ (with respect to C).

THEOREM 1. With X, C and $\{u_n\}$ as above, the sequence $\{c_m\}$ converges. (Thus the asymptotic center c exists.)

PROOF. If r = 0 then, as can be readily seen, $\{u_n\}$ is a Cauchy sequence and $\lim_{n\to\infty} u_n = \lim_{m\to\infty} c_m (=c)$. We may then assume that r > 0. Suppose now, for a contradiction, that $\{c_m\}$ fails to converge. Then an $\varepsilon > 0$ exists such that for any natural number N there are integers

Copyright © American Mathematical Society 1972

AMS 1969 subject classifications. Primary 4785; Secondary 5485.

Key words and phrases. Asymptotic center, fixed-point theorem, nonexpansive mappings. ¹ This research was supported by the National Research Council of Canada, Grant A-3999.

 $n > m \ge N$ with $||c_m - c_n|| \ge \varepsilon$. From the uniform convexity of X and the fact that

$$\|u_k - c_n\| \le r_n \le r_m \qquad (k \ge n),$$

$$\|u_k - c_m\| \le r_m \qquad (k \ge m)$$

it follows that

(3)
$$\left\| u_k - \frac{c_m + c_n}{2} \right\| \leq r_m \left(1 - \delta \left(\frac{\|c_m - c_n\|}{r_m} \right) \right)$$
$$\leq r_m (1 - \delta(\varepsilon/D)) \qquad (k \geq n),$$

where D is the diameter of $\{u_n\}$. On the other hand, since $\frac{1}{2}(c_m + c_n) \neq c_n$, there is a $k \ge n$ such that

(4)
$$r_n < \left\| u_k - \frac{c_m + c_n}{2} \right\|.$$

For such a k, (3) and (4) hold simultaneously so that $r_m - r_n \ge r_m \delta(\varepsilon/D)$ $\ge r\delta(\varepsilon/D)$. This, however, is impossible since $\{r_k\}$ converges.

REMARK. If X is a Hilbert space then c belongs to the closed convex hull of $\{u_n\}$. (This follows immediately from the fact that the same assertion holds for each c_m , m = 1, 2,)

3. A fixed-point theorem.

THEOREM 2. Let C, $\{u_n\}$ and c $(=\lim_{m\to\infty} c_m)$ be as in Theorem 1 and $f: C \to C$ be a mapping of C into itself satisfying the following conditions: (1) $u_n = f^n(x)$ for some $x \in C$ and all n = 1, 2, ...;

(2) there exists a positive integer n_0 and neighborhood V of c in C such that

(5)
$$||f^{k}(x) - f(v)|| \leq ||f^{k-1}(x) - v|| \quad (k \geq n_{0}, v \in V).$$

Then f(c) = c.

PROOF. If r = 0 then $c = \lim_{n \to \infty} u_n = \lim_{n \to \infty} f^n(x)$ and f(c) = c. Let then r be positive and suppose that $f(c) \neq c$. Set $\eta = ||c - f(c)||$ and choose $N \ge n_0$ large enough so that $c_n \in V$, $||c - c_n|| \le \eta/3$ and $||f(c) - f(c_n)|| \le \eta/3$ for $n \ge N$; and, therefore, $||c_n - f(c_{n-1})|| \ge \eta/3$ for all $n \ge N + 1$. Now, for all k and n with $k \ge n \ge N + 1$ we have

$$\|f^{k}(x) - c_{n}\| \leq r_{n} \leq r_{n-1},$$

$$\|f^{k}(x) - f(c_{n-1})\| \leq \|f^{k-1}(x) - c_{n-1}\| \leq r_{n-1}.$$

By uniform convexity then

$$\left\| f^{k}(x) - \frac{c_{n} + f(c_{n-1})}{2} \right\| \leq r_{n-1} \left(1 - \delta \left(\frac{\eta}{3r_{n-1}} \right) \right)$$
$$\leq r_{n-1} \left(1 - \delta \left(\frac{\eta}{3D} \right) \right) \quad (k \geq n \geq N+1).$$

where again D denotes the diameter of $\{u_n\} = \{f^n(x)\}$. On the other hand, since $(c_n + f(c_{n-1}))/2 \neq c_n$, there is a $k \ge n$ such that

$$r_n < \left\| f^k(x) - \frac{c_n + f(c_{n-1})}{2} \right\|$$

Thus $r_n < r_{n-1}(1 - \delta(\eta/3D))$ and $r_{n-1} - r_n > r_{n-1}\delta(\eta/3D) \ge r\delta(\eta/3D)$. This, however, is impossible as $\{r_n\}$ converges.

4. An immediate consequence of Theorem 2 is the following.

COROLLARY. Let C be a closed and bounded convex set in a uniformly convex Banach space and suppose that f is a continuous mapping of C into itself such that for each $x \in C$ there is a positive integer N = N(x) such that, for all integers $n \ge N$ and all $y \in C$,

$$||f^{n}(x) - f^{n}(y)|| \leq ||f^{n-1}(x) - f^{n-1}(y)||.$$

Then $f(\xi) = \xi$ for some $\xi \in C$.

REMARK. The well-known theorem of Browder [1] and Göhde [2], asserting that each nonexpansive mapping of a closed and bounded convex subset of a uniformly convex Banach space into itself has a fixed point, follows from the above corollary upon setting N = 1 (for all $x \in C$).

References

1. F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 54 (1966), 1041–1044. MR 32 #4574.

2. D. Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251–258. MR 32 #8129.

DEPARTMENT OF MATHEMATICS, DALHOUSIE UNIVERSITY, HALIFAX, NOVA SCOTIA, CANADA

Current address: Department of Mathematics, University of California, Berkeley, California 94720

208