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0. Introduction and motivation. We begin by listing some questions and
remarks which establish the theme of this paper.

1. Which cobordism classes of oriented manifolds admit nontrivial
circle actions? Answer: Atiyah-Hirzebruch [4]: For a compact oriented
manifold X of dim 4k, its o/ genus vanishes iff there is a multiple mX
which is cobordant to Y, with W,(Y) = 0, which admits a nontrivial circle
action on each of its components. The .o/ genus is the genus belonging to
the power series (x/2)(sinh x/2)~ 1.

2. Which manifolds in a given homotopy type admit nontrivial circle
actions? More specifically, of those manifolds homotopy equivalent to
complex projective n space, which admit nontrivial S actions?

Strong conjecture. If h: X — CP" is an orientation preserving homotopy
equivalence and if X supports a nontrivial circle action then h*./(CP")
= o/(X) where

(X) = [(x/2)(sinh x;/2)" " € H¥(X, Q)

and the elementary symmetric functions of the x? give the Pontrjagin
classes of X. In other words, the homotopy equivalence must preserve the
total .o/ cohomology class.

Weak conjecture. To the hypothesis of the strong conjecture add the
condition that the fixed point set of the action consists of isolated fixed
points. Then

h* o/ (CP") = o(X).

A corollary of the strong conjecture is that most homotopy complex
projective spaces do not admit S actions. The weak conjecture is dis-
cussed in detail in Part II, §2.
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The validity of the weak conjecture is related to the representations of
S* on the tangent space of X at the isolated fixed points. If X is homotopy
equivalent to CP", there must be n + 1 isolated fixed points p;. To each
we show how to associate an integer a; and compare the eigenvalues
of the S* action on the tangent space of X at p; with the integers { + (a; — a;),
k # j}.

A particularly good property of the homotopy type which is useful to
exploit in connection with the second question is the existence of a spin®
structure. In the first few sections we discuss the properties of an equi-
variant spin® structure.

Another idea we develop in connection with S! actions on manifolds in
general, is the exploitation of a theorem of Stewart (Part I, 6.1) which is
concerned with lifting an S* action on X to an S* action on a principle S*
bundle over X. Using this theorem and assuming H'(X, Z) = 0, we define
a function F from the additive group H?(X, Z) to the multiplicative group
of units of K#(X). Assuming X is a spin® manifold and using Stewart’s
theorem we construct an “‘orientation class” dg: € K& (TX) (TX = tangent
bundle of X). This class generates K¥ (TX) as a free module over K (X).

The index homomorphism Id%; : K¥(TX) — R(S?) is a homomorphism
of R(S*) modules and is intimately connected to the representations of S*
on the normal fibers of the components of the fixed point set. Suppose
that z,,..., z, is a basis for H*(X, Z) and let ®(y,,...,y) be any poly-
nomial in indeterminants y; with integer coefficients. Set w; = F(z;)e K¥(X).
Then the condition that

1A% (65:D(Wy, Wy, . .., ws)) € R(SY)
for every @ imposes stringent restrictions on the representations of S* on
the normal fibers of the components of the fixed point set. This idea is
exploited in connection with Part II, Theorems 2.11 and 2.12.

The principle applications of the ideas developed here are in Part II,
Theorems 2.8-2.12. They deal with the relationship between .2/(X), the
integers {(@ — a;)} and the integers {x;} which are the roots of the S’
action on TX at p;.

Another interesting item, which was suggested by the above mentioned
results, is an example of an exotic action of S* on CP3, It is exotic in the
sense that the eigenvalues of the S* action on TCP? at the four isolated
fixed points are distinct from those of the linear case (Part I, 6.4). See
Part II, §4 for more detail. Another significant feature of this example is
the fact that the bilinear form ¢ ) of Part II, §3 is nondegenerate in this
case, see §5 of Part II.

We have interspersed the ideas and theorems with numerous examples
and conjectures. We hope the reader finds the former of sufficient interest
to consider the latter.
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This paper is divided into two parts and is organized as follows:

I. GENERALITIES CONCERNING SMOOTH ACTIONS OF COMPACT LIE
GROUPS ON MANIFOLDS

. Properties of the index homomorphism 1d%: K¥(TX) — R(G).

2. The group spin‘(m).

(a) The half spin representations A, and A_ as complex spin‘(m)
modules.

(b) The elliptic pairing of spin‘(m) modules:

—

R™ x Ay — As.

3. Spin(m) bundles.
4. K orientation of G manifolds and Poincaré duality.
(a) Equivariant homology dual to K§.
(b) Examples of orientations constructed from equivariant spin(m)
structures.
5. Formula for I1d¥: K (TX) — R(G) in terms of:
(a) Orientation class of X.
(b) Representations of G on normal fibers to fixed point set.
6. Specialization to S actions.
(a) Stewart’s theorem.
(b) The homomorphism from H*(X, Z) to the group of units of
K&(X).
(c) Standard example—Illustration of (a) and (b) for the case of
“linear actions” of S* on CP".

II. APPLICATIONS TO S ACTIONS ON A HOMOTOPY COMPLEX
PROJECTION SPACE X AND SPECULATIONS

1. Generalities.

(a) The equivariant “Hopf bundle” n € K¥(X).

(b) The integers a; associated to the component X of the fixed point
set of the S action by restricting # to a point p;e X .

(c) Comparison of K (X) with K¥(XZ?"), X?%»" = fixed point set of
Zy,<S L

2. S! actions on X with isolated fixed points.

(a) Number theoretic properties of the eigenvalues of the representa-
tions of S* on the tangent space at the isolated fixed points.

(b) Theorem 2.8; The relations between the eigenvalues of the
representations of S' above and the integers a; defined by the
equivariant Hopf bundle #.

(c) The class &/(X)e H*(X, Q).
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3. Speculation: The bilinear form { ) on K§(X).
(a) Analogy with cup product pairing for ordinary cohomology
theory.
(b) When is { ) nondegenerate over R(G)?
(c) Examples where < ) is nondegenerate.
4. An exotic action of S* on CP3.
(a) Exotic representations on TCP? at isolated fixed points.
(b) Identification of differential structure.
5. The bilinear form { ) on K¥(X), X = CP3,

It is indeed a pleasure to acknowledge my gratitude to Glen Bredon
who made several important suggestions concerning the material of this
paper. Also, one should consult the work of W. Y. Hsiang referenced in
the bibliography for related ideas.

I. GENERALITIES CONCERNING SMOOTH ACTIONS OF COMPACT LIE
GROUPS ON MANIFOLDS

1. Properties of the index homomorphism. 1d3: K¥(TX) -R(G). Here
we review the relevant properties of the equivariant K theory of [1], [5]
and [6]. Throughout, G is a compact Lie group acting smoothly on a
manifold X. Denote by K¥(X) the equivariant K theory of X. We note
that K¥(Y) is defined for any locally compact G space Y, in particular for
Y = TX the tangent space of X. In this case, K&(TX) is a module over

¥(X) via * where n:TX — X is the projection.

If i:Z - X is the inclusion of a G invariant submanifold Z whose
normal bundle v' is complex, there is a homomorphism

iy K§(Z) - K§(X)
with the property
(1.1) () = A_4(v)-x
when x € K¥(Z) and A_,:K¥Z) - K)(Z) is the operation which sends a
G vector bundle ¢ to Y (—1)'2%(¢&), A(¢) is the ith exterior power of &.
We note that TZ = TX always has a complex normal bundle namely

7*(v ® C) where n: TZ — Z is the projection and v is the normal bundle
of Z in X. Thus if Ti denotes the inclusion of TZ in TX, the homomorphism

Ti,.: K TZ) - K& TX)
satisfies
(1.2) Ti*Tiyx = A_,(v® C)- X
for x e K¥(TZ). Recall K¥(TZ) is a K¥(X) module via n*.
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Note that K4(point) = R(G) is the complex representation ring of G
and K¥(X) is an R(G) module. An important example is the case G = S*,
the circle group. Then R(S!) = Z[t,t~ '] is the ring of Laurent series

N _yait’. Here N is an arbitrary positive integer and all g; are integers.
Of fundamental importance is the existence of a homomorphism of

R(G) modules:
1d3: K&(TX) — K§(pt) = R(G);

R(G) is the complex representation ring of G (character ring of G). This
homomorphism satisfies a few basic properties which makes it quite
accessible to computation. Let w:G' — G be a homomorphism. Then
there is a homomorphism w*: K¥(TX) - K¥(TX) and a commutative
diagram

*
KA(TX)—2—»K%,(TX)
(1.3) 1dZ 1d%, (Compatibility axiom).

R(G)———d)———bR(Gl)

Of course w* is defined for any G space Y. If i: Z — X is the inclusion of
an invariant submanifold, then there is a commutative diagram

Kg(TZ)——I’i—m;g(TX)
(1.4) 1d¥ Id3

R(G)—4PUY_, 2l6).

(1.5) If X is a point, Id§ is the identity map of R(G) = K¥(TX).

Let G be abelian and g € G. Denote by p the prime ideal of characters
of R(G) which vanish at g. The localized ring R(G), consists of the fractions
{x/¥lx, ¥ € R(G), Y(g) # 0} with the relation y,/W, = x,/, if there is an
o € R(G) with w(g) # 0 and w(x,¥, — x2¥;) = 0. If M is an R(G) module
M, = M ®ge R(G),.

If S is a subset of G, X® denotes the set of points of X fixed by elements
of S. Note that since G is abelian, X® is a G invariant submanifold of X
for g e G. There is then this basic theorem of Atiyah-Segal [5].

(1.6) LocALIZATION THEOREM. The inclusion i: X® — X induces isomor-
phisms i} : K&X), - K&X9), and Ti} :K¥TX), - K¥TX?®),. The latter
has inverse A_1(v ® C)~ }(Ti),« where v is the normal bundle of X* in X.

Thus 1d} is completely determined by (1.4), (1.5) and (1.6) in the case X*®
consists of isolated points.
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When v is a G vector bundle over X and Z < X is an invariant sub-
manifold, we denote by v|, this bundle restricted to Z. If Z = x is a fixed
point, it is a complex G module and we let v|.(g) denote the trace of the
element g acting on v, for g € G, i.e., the value at g of the character of G
defined by v,.

2. The group spin‘(m). Let V be a real vector space of dimension
m = 2n. We suppose V endowed with the standard inner product with

respect to an orthonormal base ey, e,,...,e,. Let A(V) denote the
Clifford algebra of V [2], [13]. For ve V < A(V) we have
21) v’ = —|pll?-1

where 1 € A(V) is the identity.

A(V) is the direct sum A* @ A~ where A™ is spanned by the products
e;e;, - e, with keven and A~ by the products with odd k. The multiplica-
tive subgroup of A(V) generated by elements of the unit sphere S"" ! = V
< A(V) is denoted by spin(m). The intersection spin(m) N A" is the group
spin(m).

The group spin(m) acts in an obvious manner on 4+ ® C giving a linear
representation of spin(m). This representation is reducible

AT®C=2"A, @A)

where A, is the + eigenspace of (i)"e,e, - - - €,, = T and A_ is the negative
eigenspace of .

Observe that 72 = 1 and © commutes with elements of A* and so with
spin(m) and

w= —vt forveV.
Because of this, left multiplication by v € ¥, denoted by L(v), maps A, to
A_ and vice versa. Let
0:Vx AL >V xA;
be the map defined by
2.2) 0(v, ) = (v, L(v)J), veV,0eA,.
Then 6 is elliptic, i.e., for fixed v # 0 in V the linear map
0,;0 x Ay > v x Ag
defined by restricting 6 is an isomorphism. This follows from the fact that
0,0 0,(v, 9) = (v, L0)L(v)9) = (v, —IIvl|*3)
because L(v) o L(v) = L(v*) = —|jv]|*- 1 by (2.1).



1972] S' ACTIONS ON HOMOTOPY COMPLEX PROJECTIVE SPACES 111

The generator ¢ = — 1 € A(v) of the double covering
7, :spin(m) — SO(m)

acts as multiplication by —1 on A, and A_. This means that the action
of spin(m) on these two representation spaces may be extended to the
group

spin‘(m) = spin(m) x z, S.2
Here Z, < spin(m) is the subgroup generated by — 1 espin(m)and Z, < S*
is the subgroup generated by —1 < S*. Explicitly if [g,t] denotes an
equivalence class in spin‘(m) determined by g € spin(m) and t € S* € C, then

[g,t6 =t-(g-6) fordeA,.

Of particular importance to us is the commutative diagram

U(m)—A——b spin‘(m)
2.3) v m

SO(m).
Here n[g, t] = 7,(g);

(el ,i02 ey — A cos; sin0;
¥ diag(e”, €%,. . ., ) dlag(_Sin 6, cos, < SO(m),

Y, diag(e®, €%, .. ., e%)
= lj1 (cos 0/2 — sin 0,/2 e,;_ ,e,,), exp[ — i(ZOj/2)]].
Note that
j]jl (cos 8;/2 — sin 6;/2 e,;_e,;) € spin(m) = A(V)

s0 Y, makes sense and ), = Y.

Observe that spin(m) has a central circle subgroup S* and the quotient
is SO(m). The orbit map is 7.

Moreover there is an exact sequence of groups

24 1 — spin(m) 5 spin“(m) &> S' - 1,  jlg,t] = t%,

2In general if X is a right G space and Y is a left G space X x Y denotes the space
obtained from X x Y by identifying (xg, g~ 'y) with (x, y). xe X, ye Y,g€G.



112 TED PETRIE [March

and a commutative diagram
. m .
spin‘(m) x S'——L pspin‘(m)

(2.5) jxd j

St x si—2pg1
Here m, is multiplication in spin(m), m, multiplication in S* and d is the

squaring map d(t) = t2. Since S! is central in spin(m), m, is a homomor-
phism of groups.

3. Spin‘ bundles. Here we collect some of the properties of spin(m)
bundles which will be useful in our analysis of actions on spin® manifolds.

The classifying space of a group G is denoted by B;. From diagram
(2.5) and the fact that m,; and m, are homomorphisms of groups we obtain
a commutative diagram

my
Bspin“(m) X BS1 ’Bspin”(m)

(3.1) jxd J

m
Bgi x Bg——2% 3By .

The map m,; makes Bg,inem the total space of a principle Bg: bundle
over Bgo(, and there is a commutative diagram of fiber spaces

le "—‘_"—"le

i d
(3.2) Bipineom—2—»Bg:
7 A

4 W2 v
Bso(m)———" J([Z2, 2] .

which shows that the principle bundle ¢ defined by 7 is induced from
the bundle over K[Z,,2] via the map W,. Of course, the bundle over
K[Z,, 2] arises from the diagram of groups 1 - Z, —» S! % S! — 1,
Principle Bs: bundles over By, induced from this principle Bs: bundle
over K[Z,,2] are classified by H*(Bsogm» Z,) = Z,. This group is gener-
ated by the universal second Stiefel-Whitney class W,. Thus, to justify the
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notation W, for the map inducing the bundle ¢, it suffices to show that
T3(Bspinegm) 18 DOt Z @ Z, = n5(Bs: X Bgg(m), i€, that W, is not the
trivial map. But this follows from the fact that =, (spin(m)) = Z which is a
consequence of the fact that spin(m) is simply connected and the exact
sequence (2.4). This gives

LEMMA 3.3. Bgpineam) is the total space of a principle Bg: bundle over
Bsom induced from the nontrivial bundle over K[Z,, 2] by a map W, : Bsom
— K[Z,, 2] realizing the universal second Stiefel-Whitney class.

Let 6 be a principle SO(m) bundle over a space X classified by a.map
¢: X — Bgomy By definition a spin‘(m) structure (briefly a spin® structure)
on ¢ is a homotopy class of maps &: X — Bipineem such that ¢ is homotopic
to c. Let 0 € H%(Bgs:, Z) be a generator of this group.

LEMMA 3.4. The mod 2 reduction of &*j*(a) is W,(J), the second Stiefel-
Whitney class of 0.

PROOF. Let o, be the mod 2 reduction of ¢. Then if i e H¥(K[Z,, 2], Z,)
is the generator, A*(i) = ¢, and

W,(8) = c*W3(i) = E*n*W3(i) = &%*a,

which is the mod 2 reduction of (¢*j*a).

We remark that the multiplication m, of (3.1) corresponds to the tensor
product of complex line bundles. Since Bspincem is the total space of a
principle Bg: action, HX(X, Z) acts on [X, Bspinc(m), the set of homotopy
classes of maps of X to Bqpinc(m), in the following manner. Letf € [ X, Bspinc(m)]
and g € [X, Bs:] = H%(X, Z). Then we obtain a commutative diagram

fxg my
X _’Bspinc(m) X le__}Bspin”(m)

jxd j
m
le X le —'—2‘—" le.

Denote the composition m, f x g by fog. This defines the action of
HZ(X, Z) on [X, Bspin“(m)]-

Let f denote the complex line bundle over X defined by jf. If P; denotes
the principle spin(m) bundle over X induced by f, then f = P X ipinem C
where spin(m) acts on C via the representation j of spin‘(m) to S* given by
(2.4). Let ¢ denote the complex line bundle over X determined by g.

LEMMA 3.5.(fog) = f-82
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PROOF. (fog)” = jmi(f x g) = My(j x d)(f x g) = My(jf x dg) = [ -
Since Bgpineqm is the fiber product of

Bsom ~»K[Z,,2] and By —45K[Z,,2]
we have:

COROLLARY 3.6. The spin‘(m) structures on a principle SO(m) bundle 6
are in 1-1 correspondence with elements d € H*(X, Z) whose mod 2 reduc-
tion is W,(0) the second Stiefel-Whitney class of 6. An explicit correspondence
is this: Let P be the total space of a principle spin‘(m) bundle such that the
orbit space P/S' = Q of P by S < spin(m) is the total space of 6. (Since
spin‘(m)/S* = SO(m), Q is the total space of a principle SO(m) bundle.) Then
the correspondence is given by P — c(¢). Here & is the line bundle whose
total space is P X (pinemC and ¢y (&) is its first Chern class.

Suppose that X is a smooth m dimensional manifold. By definition a
spin‘(m) structure on X is a spin‘(m) structure on its tangent bundle TX.

LemMa 3.7. If H3(X, Z,) = 0 then X has a spin‘(m) structure.

Proof. H3(X, Z) - H*(X, Z,) is onto.
REMARK. We find it convenient at times to use the total space P of a principle
spin‘(m) bundle to designate the spin‘(m) structure it defines.

4. Orientation of G manifolds and Poincaré duality. Let X be a compact
G manifold of dimension m. Let W be a (real) G vector bundle over X of
dimension k. An orientation for W is a class wge K&(W) such that
i*wg € K&(W)0) generates K%(W|0) freely over K%(O) for every orbit O.
Here i is the inclusion of W|0 in W,

DEFINITION. An orientation for X is an orientation ag € KG(TX) of the
tangent bundle of X.

Observe that if X has a boundary 0X, then 0X is oriented by j*(ag),
j:0X — X because

K™(TXl,x) = K™(T0X x R') = K"~ Y(ToX).

An orientation class o provides a Thom homomorphism y = X :K%(X)
— KY(TX), Y&(2) = ag - A

LeMMA 4.1. Y& is an isomorphism.

PrOOE. Let X denote the orbit space of X by G. There are two sheaves
over X, &, and J, whose stalks are respectively

#(%) = K§Gx),  7,(%) = K§TGx),

where X €eX and Gx = X is the orbit of x € X lying over X.
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Multiplication by o induces a map of the spectral sequence [12]
E}? = H(X, %) =K ¥(X)
to the spectral sequence
E§* = H*X, 7)) = K¥(TX)
which is an isomorphism on the E, level.
COROLLARY 4.2. Y% is an isomorphism.
COROLLARY 4.3. y &) : K¥(X, 0X) » K&(TX, TX |,x) is an isomorphism.

Proor. Multiplication by o induces a map of the exact sequence of the
pair (X, 0X) to (TX, TX|,x) which is an isomorphism on two terms by the
preceding. The result follows by the five lemma.

REMARK. We could equally well have defined an orientation for X by
means of a class Bg € KENX) where NX is the normal bundle of X which is
equivariantly imbedded in a complex representation space M for G. These
are equivalent concepts.

The significance of this remark is that K§(NX) is the equivariant
homology of X dual to K¥(X) if X is a closed manifold. To see this, note
that X « M < M* = §2" where M* is the one point compactification
of M which we assume has complex dimension n. Then by definition

4.4 K{(X) = K& i(*", $*" — X) = K& (NX, NXl5x)

by excision.
The map C which collapses the exterior of the closure NX of NX in M*
induces

C*:K%(NX, 0NX) » K&(M, +) = R(G).

The composition of C* with the map m:K¥X)® KENX, NX|,x)
— K¥(NX, NX|,x) which exhibits K}(NX, NX|,x) as a module over
K¥(X) defines the duality pairing

d:K5(X) ® K;i—(X) - R(G).
There is a second duality pairing which is more appropriately related
to our purpose when X is a closed manifold. It is the map
K¥(X) ® K¢TX) - R(G)
which is defined by
d(x ® y) = Id§(x- y)
for x € K§(X) and y € K¥(TX).



116 TED PETRIE [March

REMARK. When X is a closed manifold, these two pairings are the same.
The point is that the pairing d is more generally defined while the pairing d
is more accessible to computation because of the properties of the index
homomorphism. To extend the definition of d to spaces X which are not
manifolds we must assume that X is imbedded in a complex representation
space M of G with an equivariant regular neighborhood NX = M™. Then
K¢(X) = KZ" (NX, 0NX) and d is defined for such G spaces X as above.

To justify the above remark we offer

PROPOSITION 4.5. If X is a closed G manifold there is an isomorphism
¢:K%(TX) —» K&NX) which takes d to d.

ProoF. There is a commutative diagram of vector bundles

TNX - TX
|~
NX - X.

Since NX < M is an open subset, TNX =~ NX x M as a G vector
bundle over NX. However, TNX = n*(NX ® C). Since TNX is a com-
plex G bundle over NX as well as over TX, we have Thom isomorphisms

Y1 KENX) > K4TNX),
Y, K§(TX) - KETNX),

and a commutative diagram

K%NX) ® K&X) -2+ KiNX) ————> K¥(M)
22 lwl
K¥TNX) ® KG(X)—-bK (TNX) —» K¥(TM)
w01 |
K(TX) ® K&(X) — KXTX) — R(G)
in which all vertical maps are isomorphisms. Since d is defined by the top
row and d by the bottom, the demonstration is complete.

With the equivariant homology of a manifold X defined by (4.4) we
obtain Poincaré duality free if an orientation is given.

PROPOSITION 4.6. If X is a compact oriented G manifold of dimension m,
then X satisfies Poincaré duality: K¢(X) =~ K2 (X, 0X).

Proor. If a; € KG(TX) is an orientation then
WX: Kg(X’ aX) - KE(TX’ TX|ax)
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is an isomorphism. But
K&TX, TX|5x) = KENX, NX|x) = K§(X).

In view of Proposition 4.6, we expect the difficulties of studying G
actions on manifolds by using Poincaré duality to be intimately connected
with the existence of an orientation. There is a very general situation in
which it is often possible to construct an orientation. This occurs when X
is a spin‘(m) manifold. Again this means there is a principle spin‘(m)
bundle P over X such that

P X gineemV = TX the tangent bundle of X.

spi
We assume: that G acts on the left on P, commutes with the right
action of spin‘(m) and is compatible with the natural left action

@) on Q, the principle SO(m) bundle associated to TX, (in
other words, the frame bundle of TX), obtained by sending
(g, [v1, U2y -5 Up]) = [dgvy,dgu,,...,dgv,] for g€ G, [vq,...,0,]
a frame in Q and dg the differential of G.

The elliptic pairing (2.2) is the basic property for constructing a class d¢
in KZ(TX) from the equivariant spin‘(m) structure on X.

For brevity, set H = spin‘(m). We define a G x H complex of vector
bundles [6, p. 489] over P x V:

PxVxASBPxVxA_,

@(p, v,6) = (p, 6(v, 6)).
The G x H action on P x V is given by

(& M (p,v) = (gph™", hv);
the action on P x V x A, is given by

(8 M)(p, v,b) = (gph™", hv, hb).
Since 0 is an elliptic pairing, this complex defines an element
S eK%, u(P x V)= KP xy V)= K™TX).

Here are some examples in which J; or a close variant defines an
orientation. :

ExAMPLE 1. X is a point, m is even, G = U(m/2) is the unitary group of
isometries of C™2 and V= C™? denotes the standard U(m/2) module. It
is a U(m/2) bundle over a point. We define an orientation class Ay for V.

The elliptic pairing 0 : V x A, > V x A_ of (2.2) gives an elliptic
U(m/2) complex






