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This paper is dedicated to Professors Leroy M. Kelly and Fritz 
Herzog who gave so enthusiastically of their time and talent in develop­
ing undergraduate mathematicians at Michigan State University. I 
was one of their beneficiaries. 

0. Introduction and motivation. We begin by listing some questions and 
remarks which establish the theme of this paper. 

1. Which cobordism classes of oriented manifolds admit nontrivial 
circle actions? Answer: Atiyah-Hirzebruch [4]: For a compact oriented 
manifold X of dim 4k, its sd genus vanishes iff there is a multiple mX 
which is cobordant to X with W2(Y) = 0, which admits a nontrivial circle 
action on each of its components. The sd genus is the genus belonging to 
the power series (x/2)(sinhx/2)_1. 

2. Which manifolds in a given homotopy type admit nontrivial circle 
actions? More specifically, of those manifolds homotopy equivalent to 
complex projective n space, which admit nontrivial S1 actions? 

Strong conjecture. If h : X -• CPn is an orientation preserving homotopy 
equivalence and if X supports a nontrivial circle action then h*sd(CPn) 
= s/(X) where 

sd(X) = ri(*i/2)(sinh xJlTx e H*(X, Q) 

and the elementary symmetric functions of the xf give the Pontrjagin 
classes of X. In other words, the homotopy equivalence must preserve the 
total sd cohomology class. 

Weak conjecture. To the hypothesis of the strong conjecture add the 
condition that the fixed point set of the action consists of isolated fixed 
points. Then 

h*sd(CPn) = sd{X). 

A corollary of the strong conjecture is that most homotopy complex 
projective spaces do not admit S1 actions. The weak conjecture is dis­
cussed in detail in Part II, §2. 
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The validity of the weak conjecture is related to the representations of 
S1 on the tangent space of X at the isolated fixed points. If X is homotopy 
equivalent to CP\ there must be n + 1 isolated fixed points pjt To each 
we show how to associate an integer aj and compare the eigenvalues 
of the S1 action on the tangent space of X at pj with the integers {± (ak — a,-), 
k*j}. 

A particularly good property of the homotopy type which is useful to 
exploit in connection with the second question is the existence of a spinc 

structure. In the first few sections we discuss the properties of an equi-
variant spinc structure. 

Another idea we develop in connection with S1 actions on manifolds in 
general, is the exploitation of a theorem of Stewart (Part I, 6.1) which is 
concerned with lifting an S1 action on X to an S1 action on a principle S1 

bundle over X. Using this theorem and assuming HX(X, Z) = 0, we define 
a function F from the additive group H2(X, Z) to the multiplicative group 
of units of K$i(X). Assuming X is a spinc manifold and using Stewart's 
theoTem we construct an "orientation class" ösi e K$i(TX) (TX = tangent 
bundle of X). This class generates Kgi (TX) as a free module over Kgi(X). 

The index homomorphism Idfi : K$i(TX) -> RiS1) is a homomorphism 
of RiS1) modules and is intimately connected to the representations of S1 

on the normal fibers of the components of the fixed point set. Suppose 
that z l 5 . . . , zs is a basis for H2(X, Z) and let <J>(y1?..., ys) be any poly­
nomial in indeterminants yt with integer coefficients. Set wt = F(zf)e K|i(X). 
Then the condition that 

Idf1(^1(D(w1,w2,...,ws))GJR(S1) 

for every O imposes stringent restrictions on the representations of S1 on 
the normal fibers of the components of the fixed point set. This idea is 
exploited in connection with Part II, Theorems 2.11 and 2.12. 

The principle applications of the ideas developed here are in Part II, 
Theorems 2.8-2.12. They deal with the relationship between si(X\ the 
integers {(ak — a7)} and the integers {xjk} which are the roots of the S1 

action on TX at pj. 
Another interesting item, which was suggested by the above mentioned 

results, is an example of an exotic action of S1 on CP3. It is exotic in the 
sense that the eigenvalues of the S1 action on TCP3 dit the four isolated 
fixed points are distinct from those of the linear case (Part I, 6.4). See 
Part II, §4 for more detail. Another significant feature of this example is 
the fact that the bilinear form < > of Part II, §3 is nondegenerate in this 
case, see §5 of Part II. 

We have interspersed the ideas and theorems with numerous examples 
and conjectures. We hope the reader finds the former of sufficient interest 
to consider the latter. 
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This paper is divided into two parts and is organized as follows : 

I. GENERALITIES CONCERNING SMOOTH ACTIONS OF COMPACT LIE 

GROUPS ON MANIFOLDS 

1. Properties of the index homomorphism là^:K%(TX) -» R(G). 
2. The group spinc(m). 

(a) The half spin representations A+ and A_ as complex spinc(m) 
modules. 

(b) The elliptic pairing of spinc(m) modules : 

Rm x A ± - • A + . 

3. Spinc(m) bundles. 
4. KG orientation of G manifolds and Poincaré duality. 

(a) Equivariant homology dual to Kg. 
(b) Examples of orientations constructed from equivariant spinc(m) 

structures. 
5. Formula for Id£ :KG(TX) -> R(G) in terms of: 

(a) Orientation class of X. 
(b) Representations of G on normal fibers to fixed point set. 

6. Specialization to S1 actions. 
(a) Stewart's theorem. 
(b) The homomorphism from H2(X, Z) to the group of units of 

KUX). 
(c) Standard example—Illustration of (a) and (b) for the case of 

"linear actions" of S1 on CPn. 

II. APPLICATIONS TO S1 ACTIONS ON A HOMOTOPY COMPLEX 

PROJECTION SPACE X AND SPECULATIONS 

1. Generalities. 
(a) The equivariant "Hopf bundle" rj e K$i(X). 
(b) The integers aj associated to the component Xj of the fixed point 

set of the S1 action by restricting rj to a point Pj e Xjt 

(c) Comparison of KJi(X) with K%,{Xz»r\ Xz*r = fixed point set of 
Zpr cz S1. 

2. S1 actions on X with isolated fixed points. 
(a) Number theoretic properties of the eigenvalues of the representa­

tions of S1 on the tangent space at the isolated fixed points. 
(b) Theorem 2.8; The relations between the eigenvalues of the 

representations of S1 above and the integers a} defined by the 
equivariant Hopf bundle rj. 

(c) Theclassj/(X)eiJ*(X,Ô). 



108 TED PETRIE [March 

3. Speculation: The bilinear form < > on K%(X). 
(a) Analogy with cup product pairing for ordinary cohomology 

theory. 
(b) When is < > nondegenerate over R(G)1 
(c) Examples where < > is nondegenerate. 

4. An exotic action of S1 on CP3. 
(a) Exotic representations on TCP3 at isolated fixed points. 
(b) Identification of differential structure. 

5. The bilinear form < > on K£i(X), X = CP3. 

It is indeed a pleasure to acknowledge my gratitude to Glen Bredon 
who made several important suggestions concerning the material of this 
paper. Also, one should consult the work of W. Y. Hsiang referenced in 
the bibliography for related ideas. 

I. GENERALITIES CONCERNING SMOOTH ACTIONS OF COMPACT LIE 

GROUPS ON MANIFOLDS 

1. Properties of the index homomorphism. IA^:K%(TX) ->R(G). Here 
we review the relevant properties of the equivariant K theory of [1], [5] 
and [6]. Throughout, G is a compact Lie group acting smoothly on a 
manifold X. Denote by K%(X) the equivariant K theory of X. We note 
that K%(Y) is defined for any locally compact G space X in particular for 
Y = TX the tangent space of X. In this case, K%(TX) is a module over 
K%(X) via 7i* where n : TX -* X is the projection. 

If i :Z-»X is the inclusion of a G invariant submanifold Z whose 
normal bundle v' is complex, there is a homomorphism 

with the property 

(l.i) /%w = A.1(vrx 
when x e K%(Z) and A_ x :K%(Z) -• K%(Z) is the operation which sends a 
G vector bundle £ to £(— l)fAf(̂ ), X\Q is the ith exterior power of £ 

We note that TZ c TX always has a complex normal bundle namely 
7i*(v ® C) where n\ TZ -> Z is the projection and v is the normal bundle 
of Z in X. Thus if Ti denotes the inclusion of TZ in TX, the homomorphism 

Ti^K%{TZ)-+K%{TX) 

satisfies 

(1.2) Tf*Tïîicx = /l_1(v(8)C).Z 

for x G K*{TZ). Recall K%{TZ) is a K%{X) module via TC*. 
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Note that KG(point) = R(G) is the complex representation ring of G 
and K%(X) is an R(G) module. An important example is the case G = S1, 
the circle group. Then RiS1) = Z[t9t~

x] is the ring of Laurent series 
£J = _Nait\ Here N is an arbitrary positive integer and all at are integers. 

Of fundamental importance is the existence of a homomorphism of 
R(G) modules : 

ldx
G:K%(TX)^K*(pt)==R(G); 

R{G) is the complex representation ring of G (character ring of G). This 
homomorphism satisfies a few basic properties which makes it quite 
accessible to computation. Let coiG1 -• G be a homomorphism. Then 
there is a homomorphism co*:KG

i(TX) -» K%{TX) and a commutative 
diagram 

K%{TX) œ * *K£i(TX) 

(1.3) | ld£ |ld£i (Compatibility axiom). Wo |] 
Y _ CO _ • 

R(G) •^(G1) 

Of course co* is defined for any G space Y. If i : Z -> X is the inclusion of 
an invariant submanifold, then there is a commutative diagram 

K*{TZ) ^*—•Kg(TX) 

(1.4) lldg Id* 

„ • _ identity J^ 
£(G) -—•K(G). 

(1.5) If X is a point, Id£ is the identity map of R(G) = K%(TX). 

Let G be abelian and geG. Denote by p the prime ideal of characters 
of R(G) which vanish at g. The localized ring R(G)P consists of the fractions 
{j#l& <A ^ #(G), i//(g) # 0} with the relation xd^i = X2M2 if there is an 
co e R(G) with co(g) ^ 0 and co(x1il/2 - Xi^i) = 0. If M is an R(G) module 
MP=M ®RiG) R(G)p. 

If S is a subset of G, Xs denotes the set of points of X fixed by elements 
of S. Note that since G is abelian, Xg is a G invariant submanifold of X 
for g e G . There is then this basic theorem of Atiyah-Segal [5]. 

(1.6) LOCALIZATION THEOREM. The inclusion i:X8 -> X induces isomor­
phisms i*:Xg(X)p -> KG(X\ and Ti*:KG(TX)p -> KG(TX%. The latter 
has inverse /l_ x(v (g) C)~ 1(TÏ%* w/*m> v is £/K? norma/ bundle of Xg in X. 

Thus Id£ is completely determined by (1.4), (1.5) and (1.6) in the case Xg 

consists of isolated points. 
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When v is a G vector bundle over X and Z <= X is an invariant sub-
manifold, we denote by v|z this bundle restricted to Z. If Z = x is a fixed 
point, it is a complex G module and we let v\x(g) denote the trace of the 
element g acting on vx for geG, i.e., the value at g of the character of G 
defined by vx. 

2. The group spinc(m). Let V be a real vector space of dimension 
m = 2n. We suppose V endowed with the standard inner product with 
respect to an orthonormal base el9e29...9em. Let A(V) denote the 
Clifford algebra of V [2], [13]. F o r u e F c A(V) we have 

(2.1) t;2 = - I M I M 

where 1 e A(V) is the identity. 
A(V) is the direct sum A+ © A" where A+ is spanned by the products 

eheii ' " efc with k e v e n an(* A~ by the products with odd k. The multiplica­
tive subgroup of A(V) generated by elements of the unit sphere Sm~x c: V 
c A(V) is denoted by spin(m). The intersection spin(m) n A+ is the group 
spin(m). 

The group spin(m) acts in an obvious manner on A + (x) C giving a linear 
representation of spin(m). This representation is reducible 

A+ ®C=2 m (A + ©A_) 

where A+ is the + eigenspace of (i)ne1e2 • • • em = T and A_ is the negative 
eigenspace of T. 

Observe that T2 = 1 and T commutes with elements of A+ and so with 
spin(m) and 

TV = — I;T for i; G K 

Because of this, left multiplication by t; G K denoted by L(v\ maps A+ to 
A_ and vice versa. Let 

6:Vx A±-+Vx AT 

be the map defined by 

(2.2) 6(v, Ô) = (t;, L(t;)(5), v e K <5 e A ±. 

Then 0 is elliptic, i.e., for fixed v ^ 0 in F the linear map 

0V:V X A ± -> t? X Aq: 

defined by restricting 6 is an isomorphism. This follows from the fact that 

evo9v(v,S) = (v,L(v)L(v)ô) = (v, -\\v\\2ô) 

because L(v)oL(v) = L(t;2) = -| |i; | |2 • 1 by (2.1). 
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The generator s = — 1 e A(v) of the double covering 

n1:spm(m) -• SO(m) 

acts as multiplication by — 1 on A+ and A_. This means that the action 
of spin(m) on these two representation spaces may be extended to the 
group 

spinc(m) = spin(m) xZ2 S
1.2 

Here Z2 c: spin(m) is the subgroup generated by — 1 e spin(m) and Z2 cz S1 

is the subgroup generated by — 1 c S1. Explicitly if [g, t] denotes an 
equivalence class in spinc(m) determined by g G spin(m) and teS1 eC, then 

[g9t]ô = t.(g.ô) for<5eA±. 

Of particular importance to us is the commutative diagram 

U(m) — •spinc(m) 

(2.3) \ < A 

Here;i[g,t] = n^g); 

SO(m). 

^diag(^^...?^) = d i a g ( ^ ^ 2ej)-SO(m)9 

i A o d i a g ( ^ , ^ 2 , . . . , ^ ) 

[ 0 (cos 0,-/2 - s inöy2^_^ 2 j) ?exp[-f(p j /2)]] . 

Note that 

Y[ (cos 8j/2 — sin OJl e2j- i ^ ) e spin(m) a A(V) 
7 = 1 

so i/̂ o makes sense and n\l/0 = \j/. 
Observe that spinc(m) has a central circle subgroup S1 and the quotient 

is SO(m). The orbit map is n. 
Moreover there is an exact sequence of groups 

(2.4) 1 -> spin(m) -4 spinc(m) -4 S1 -> 1, j[g, t] = r2, 

2 In general if X is a right G space and Y is a left G space X xGY denotes the space 
obtained from X x Y by identifying (xg, g" V) with (x, y). x e X, >; e Y, g e G. 
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and a commutative diagram 
« i i 

spinc(m) x S1 —• spin^m) 

(2.5) j x d 

S1 x S1-
m? 

+S1. 

Here mx is multiplication in spinc(m), m2 multiplication in S1 and d is the 
squaring map d(t) = t2. Since S1 is central in spinc(m), mx is a homomor-
phism of groups. 

3. Spinc bundles. Here we collect some of the properties of spinc(m) 
bundles which will be useful in our analysis of actions on spinc manifolds. 

The classifying space of a group G is denoted by BG. From diagram 
(2.5) and the fact that m1 and m2 are homomorphisms of groups we obtain 
a commutative diagram 

(3.1) 

-°spinc(m) X &S1 ' 

J X d 

m X-+B spinc(m) 

J 

Bsi x Bsi 
m0 +BS1 

The map mt makes Bspinc(m) the total space of a principle Bsi bundle 
over BSO(m) and there is a commutative diagram of fiber spaces 

BSi- -+B*. 

I' 

(3.2) Bspmc(m) ^Bsi 

In ÎA 

B 
W, ->K[Z2,1\. SO(m) 

which shows that the principle bundle £ defined by n is induced from 
the bundle over K[Z2,2] via the map W2. Of course, the bundle over 
K[Z29 2] arises from the diagram of groups 1 -*> Z2 -• S1 -4 S1 -• 1. 

Principle Bsi bundles over BSO(m) induced from this principle Bsi bundle 
over K[Z2,2] are classified by H2(BSO(m)9 Z2) ^ Z2. This group is gener­
ated by the universal second Stiefel-Whitney class W2. Thus, to justify the 
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notation W2 for the map inducing the bundle £, it suffices to show that 
7i2(£spinc(m)) is not Z ® Z2 = n2(Bsi x BSO{m)\ i.e., that W2 is not the 
trivial map. But this follows from the fact that ^(spin^m)) = Z which is a 
consequence of the fact that spin(m) is simply connected and the exact 
sequence (2.4). This gives 

LEMMA 3.3. Bspincim) is the total space of a principle Bsi bundle over 
BSO(m) induced from the nontrivial bundle over K[Z2, 2] by a map W2 : BSO{m) 

-• K[Z2,2] realizing the universal second Stiefel-Whitney class. 

Let ô be a principle SO(m) bundle over a space X classified by a.map 
c:X -• BSO(m). By definition a spinc(m) structure (briefly a spinc structure) 
on ô is a homotopy class of maps c : X -> J3spin

c(m) such that rtc is homo topic 
to c. Let a e H2(Bsh Z) be a generator of this group. 

LEMMA 3.4. The mod 2 reduction of c*/*(cr) is W2(ô\ the second Stiefel-
Whitney class of b. 

PROOF. Let o2 be the mod 2 reduction of a. Then if i e H2(K[Z2,2], Z2) 
is the generator, A*(i) = a2 and 

W2{§) = c*W?(0 = c*S*W?(0 = c*/*cx2 

which is the mod 2 reduction of (c*j*&). 
We remark that the multiplication m2 of (3.1) corresponds to the tensor 

product of complex line bundles. Since B spinc(m) IS the total space of a 
principle Bsi action, H2(X, Z) acts on [X, Bspin«(»i)l the set of homotopy 
classes of maps of X to J3spinc(w), in the following manner. Let ƒ G [X, £spin*(m)] 
and g e [X, Bsi] = H2(X, Z). Then we obtain a commutative diagram 

ƒ x gw 
'spinc(m) 

I J x d \j 

m2 • 
I>5i X f> si • -D51. 

Denote the composition mt ƒ x g by ƒ og. This defines the action of 
//2(Z,Z)on[X,Bspinc(W)]. 

Let ƒ denote the complex line bundle over X defined by jf If Pf denotes 
the principle spinc(m) bundle over X induced by ƒ then ƒ = Pf x spinc(w) C 
where spinc(m) acts on C via the representation; of spinc(m) to S1 given by 
(2.4). Let g denote the complex line bundle over X determined by g. 

LEMMA 3.5. (fogf =f-g2. 
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PROOF.(fogf = jmi(f x g) = m2(j x d)(f x g) = m2(jf x dg) =f-g2 

Since BspinC(m) is the fiber product of 

Bso(m)^K[Z2,2] and Bsl^-+K[Z2,2] 

we have : 

COROLLARY 3.6. 77ze spinc(m) structures on a principle SO(m) bundle ö 
are in 1-1 correspondence with elements deH2(X,Z) whose mod 2 reduc­
tion is W2(S) the second Stiefel-Whitney class ofb. An explicit correspondence 
is this: Let P be the total space of a principle spinc(m) bundle such that the 
orbit space P/S1 = Q of P by S1 c spinc(m) is the total space of ö. (Since 
spin^mJ/S1 = SO(m\ Q is the total space of a principle SO(m) bundle.) Then 
the correspondence is given by P ->c1(^). Here Ç is the line bundle whose 
total space is P xspinC(m)C and c^Ç) is its first Chern class. 

Suppose that X is a smooth m dimensional manifold. By definition a 
spinc(m) structure on X is a spinc(m) structure on its tangent bundle TX. 

LEMMA 3.7. If H3(X, Z2) = 0 then X has a spinc(m) structure. 

PROOF. H2(X, Z) -> H2(X, Z2) is onto. 
REMARK. We find it convenient at times to use the total space P of a principle 

spinc(m) bundle to designate the spinc(m) structure it defines. 

4. Orientation of G manifolds and Poincaré duality. Let X be a compact 
G manifold of dimension m. Let VF be a (real) G vector bundle over X of 
dimension k. An orientation for W is a class coGeKG(W) such that 
i*coG e Kk

G(W\0) generates K%(W\0) freely over K%(0) for every orbit O. 
Here i is the inclusion of W\0 in W. 

DEFINITION. An orientation for X is an orientation aG e KG(TX) of the 
tangent bundle ofX. 

Observe that if X has a boundary dX, then dX is oriented by 7*(aG), 
j\dX -• X because 

K$(TX\dX) = K%(TdX x R1) = K%-\TdX). 

An orientation class aG provides a Thorn homomorphism \jj — \j/^:K%(X) 
-,XG(TZ),iAiW = a G . l 

LEMMA 4.1. XJ/Q is an isomorphism. 

PROOF. Let X denote the orbit space of X by G. There are two sheaves 
over X, £fq and ^ whose stalks are respectively 

Sfq(x) = K%(Gx\ <Tq(x) = K%(TGx\ 

where xeX and Gx cz X is the orbit of x e X lying over x. 
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Multiplication by aG induces a map of the spectral sequence [12] 

to the spectral sequence 

Ep
2>

q = Hp{X, 3T) => K%{TX) 

which is an isomorphism on the E2 level. 

COROLLARY 4.2. \j/G
x is an isomorphism. 

COROLLARY 4.3. i/zgM) : K%{X, dX) -> K%(TX, TX\ex) is an isomorphism. 

PROOF. Multiplication by aG induces a map of the exact sequence of the 
pair (X, ÔX) to (TX, TX\ÔX) which is an isomorphism on two terms by the 
preceding. The result follows by the five lemma. 

REMARK. We could equally well have defined an orientation for X by 
means of a class j8G e K%(NX) where NX is the normal bundle ofX which is 
equivariantly imbedded in a complex representation space M for G. These 
are equivalent concepts. 

The significance of this remark is that K%(NX) is the equivariant 
homology of X dual to K%(X) if X is a closed manifold. To see this, note 
that I c M c M + = S2n where M+ is the one point compactification 
of M which we assume has complex dimension n. Then by definition 

(4.4) Kf(X) = K2
G

n-\S2\ S2n - X) s K2
G

n-\NX, NX\dx) 

by excision. 
The map C which collapses the exterior of the closure NX of NX in M+ 

induces 

C*:K%(NX, dNX) -> KG(M, +) = R(G). 

The composition of C* with the map m\K%{X) ® K%{NX,NX\dX) 
-* K%(NX9 NX\dX) which exhibits K%(NX, NX\dX) as a module over 
K^(X) defines the duality pairing 

i:K&X)®K°-JLX)^R{G). 

There is a second duality pairing which is more appropriately related 
to our purpose when X is a closed manifold. It is the map 

d:K^(X)®K^{TX)^R(G) 

which is defined by 

d(x ®y) = Id£(x • y) 

for x e K%(X) and y e K%(TX). 
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REMARK. When X is a closed manifold, these two pairings are the same. 
The point is that the pairing d is more generally defined while the pairing d 
is more accessible to computation because of the properties of the index 
homomorphism. To extend the definition of d to spaces X which are not 
manifolds we must assume that X is imbedded in a complex representation 
space M of G with an equivariant regular neighborhood NX c M+. Then 
Kf(X) = KQn~l(NX, dNX) and d is defined for such G spaces X as above. 

To justify the above remark we offer 

PROPOSITION 4.5. If X is a closed G manifold there is an isomorphism 
4>\K%(TX) -+ K%(NX) which takes d to d. 

PROOF. There is a commutative diagram of vector bundles 

TNX 

\ 
NX 

—> 

—» 

TX 

i* X . 

Since NX c M is an open subset, TNX s NX x M as a G vector 
bundle over NX. However, TNX s n*(NX ® Q. Since TNX is a com­
plex G bundle over NX as well as over TX, we have Thom isomorphisms 

^1:K%(NX)-^KUTNX), 

^2:K%{TX)^K%{TNX\ 

and a commutative diagram 

K%{NX) ® K%X) -&-* K%{NX) -^—-+ K%{M) 

Itf'i® 1 
K*(TNX) ® K&X) "' • Kg 

1 ^ 2 ® 1 

•K I 
(TNX) >K%{TM) 

ij/2 

IdS Î 
K%(TX)®KUX) -Jn-+ K*(TX) — ^ R(G) 

in which all vertical maps are isomorphisms. Since d is defined by the top 
row and d by the bottom, the demonstration is complete. 

With the equivariant homology of a manifold X defined by (4.4) we 
obtain Poincaré duality free if an orientation is given. 

PROPOSITION 4.6. If X is a compact oriented G manifold of dimension m, 
then X satisfies Poincaré duality: Kf(X) £ K^~l(X, dX). 

PROOF. If aG e K%(TX) is an orientation then 

xj,x:K%{X,dX)-*K*{TX,TX\dx) 
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is an isomorphism. But 

K*{TX9 TX\ex) s K$(NX,NX\ex) = K°(X). 

In view of Proposition 4.6, we expect the difficulties of studying G 
actions on manifolds by using Poincaré duality to be intimately connected 
with the existence of an orientation. There is a very general situation in 
which it is often possible to construct an orientation. This occurs when X 
is a spinc(m) manifold. Again this means there is a principle spinc(m) 
bundle P over X such that 

P x spin-(m)̂  = TX the tangent bundle of X. 

We assume : that G acts on the left on P, commutes with the right 
action of spinc(m) and is compatible with the natural left action 

,.— on g, the principle SO(m) bundle associated to TX, (in 
other words, the frame bundle of TX\ obtained by sending 
(g, l>i> v29...9 vm]) -> [dgvu dgv2,..., dgvm] for g e G, [vl9..., vm] 
a frame in Q and dg the differential of G. 

The elliptic pairing (2.2) is the basic property for constructing a class ôG 

in KQ(TX) from the equivariant spinc(ra) structure on X. 
For brevity, set H = spinc(m). We define a G x H complex of vector 

bundles [6, p. 489] over P x V: 

P x V x A+-^P x V x A_, 

<l*P,i>,«) = (p ,0M)) . 

The G x H action on P x F is given by 

(g,h)(p,v) = (gph~\hv); 

the action on P x V x A± is given by 

(g, h){p, v, b) = {gph~ \ to, hb). 

Since 0 is an elliptic pairing, this complex defines an element 

èGeK*G«H{P xV) = Xg(P xH V) = K&TX). 

Here are some examples in which ôG or a close variant defines an 
orientation. 

EXAMPLE 1. X is a point, m is even, G = U(m/2) is the unitary group of 
isometries of Cm/2 and K= Cm/2 denotes the standard U(m/2) module. It 
is a U(m/2) bundle over a point. We define an orientation class A^ for V. 

The elliptic pairing 9 : V x A+ -> V x A_ of (2.2) gives an elliptic 
U(m/2) complex 

Ô:Vx A+ -> Vx A_ 
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over a point. Here A+ and A_ are U(m/2) modules via the homomorphism 
\j/0 of (2.3). This complex defines an element A^ e K$( V). 

PROPOSITION 4.8. K$(V) is a free module over R(U) = K${pt) generated 
by Av. 

PROOF. The symbol of the de Rham complex of V, Àp e K$(V) is a 
generator [6], so 

Au = a'ÀpeK$(V) 

for some aeR(U). Let j:X-> U denote the inclusion of the maximal 
torus and / the composition 

K*{V) £ Xg(0) A K*(0) = R(X). 

Here i* is the restriction defined by the inclusion of the origin 0. Now 
m/2 

R(X) = Z[ti9t1 ,t2,t2 , . . . , £w/2> tm/2]' 

But/Ay =(A+ - A_)|r =Y\(l - t r % This follows from the definition 
of \//0 and the fact that the trace of t = (tu t2,..., tmj2) acting on A+ minus 
the trace of t on A_ is Yl(^~ ^i"1)^- Since R(U) -> R(Z) is injective, 
a = (-l)w / 2 . 

If G A U(m/2) is a representation then AG e K%(V\ is defined to be 
p*Av. It generates K%(V) freely over R(G). 

EXAMPLE 2. X is a simply connected spinc(m) manifold with an S1 action 
which satisfies (4.7). 

PROPOSITION 4.9. (5si is an orientation for X. 

PROOF. There are two kinds of orbits, a point and Sx. If p is a fixed point 
and i: TX|p -> TX the inclusion, TX\p — V as an S1 bundle over p and 

If S1 is an orbit, then because X is simply connected 

P\si S S1 x spinc(m) 

is the restriction of the principle spinc(m) bundle over X to the orbit S1. 
If x denotes the point SVS1, then ^ ( S 1 ) = K*(x) and 

Xîi(TX|si) = KKS1 xV)* K*(V) 

and i*((5si) = A1 e K*(V) is an orientation for V over x. Here 1 denotes the 
trivial group. 


