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Let K(£, rj) be a real valued differentiable function defined on T x T 
where T is an interval of the real line. More exact requirements on K(Ç9 rj) 
and T will be specified later. In this paper we report results on existence, 
uniqueness and characterizations of the best approximation in the Lp norm 
(1 S P S oo) to functions of the kind 

(1) K0= f W9rj)co(rj)dr,, (a,/J)c=T, 

where co(rj) is positive and continuous, by quadrature functions of the form 

(2) Q(« = t ^ ( { , 4 
i= 1 

Here r is fixed, but ct real and r\i e T are free parameters. The rji points are 
called the knots of the approximating functional. More general expressions 
of the approximation function allow multiple knots and also boundary 
terms. Specifically, in place of (2), we consider 

i = 0 cr\ i = 0 0Y\ k = l 1 = 0 GY\ 

where the knots a, /? and rjkeT are of multiplicity n, m and /ik respectively, 
and the total multiplicity of the interior knots is stipulated to be YJ=i fa — r> 
The functions (2) display each rjt as a simple knot with the terms involving 
the knots a and jS omitted. 

The class of functions of the form (3) are designated as ^ m , r . 
Our main objective is to characterize the best approximation to h(Ç) 

in the LP(T) norm from among the functions in ^„,m>^. Formally stated, 
we wish to establish criteria for evaluating {at}, {bj}, {ct} and {rjt} achieving 

(4) min 
a,,b, 

in f If m,n)oin)dn-P(Ç) 
,C„M, JT\J(X, 

p 

di 

for P of the form (3). We will also investigate the problem of the min 
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evaluated with respect to the Q functionals of the form (2). That is, deter­
mine ct and r\i for which 

p 

dl; (5) inf f I f m, nMn) df]-t c,K(l tid 

is attained. The existence problem is covered in Theorem 3 below (cf. [13, 
vol. II, p. 63]). 

We highlight three important prototypes of this formulation arising in 
different contexts and motivating our developments. 

I. Let K(£, rj) be in L2{da x da) defined on T x T where T = ( — oo, oo). 
Define 

G(t,T) = J K(t9 S)K{T, s)(j(ds) 

where a is a sigma finite measure on T. It is easy to check that G is con­
tinuous and positive definite on T x T and induces a reproducing kernel 
space. Consider the problem of determining a "best quadrature formula" 
for the continuous linear functional L(f) = $lf(t)dt where ƒ(t) = 
JV K(t, T)/(T) da{x\ ƒ e L2(<x), among the quadrature formulas of the type 
Q(f) = Ti-iatf(tù,tieT. 

Let the norm of the functional 0t{ƒ) = L(ƒ) — Q(ƒ) be denoted by 
ll^ajl where we indicate the dependence on the parameters {ah t j i . The 
norm is that conjugate to the norm of the reproducing kernel space gener­
ated by G. A "best quadrature formula" is delimited as that Q ren­
dering \\âëatt\\ a minimum. The solution to this problem is equivalent to 
the determination of the best L2(cr) approximation for 

inf f ftffe %)dt- X atK(ti9T) 
2 

G{dz) (see [13]). 

This example has relevance for regression analysis of statistical time series; 
e.g., see [11] and [12] and references therein. 

II. Consider the class J* of L2(D) functions analytic in a domain D of 
the complex plane containing a real segment [a, /?] with finite norm 

11/1,2 = ƒ ƒ '/(Z)|2|JZ| < œ' 
D 

Specify L(ƒ ) = ƒ£ co(t;)ƒ(£) dt; where œ(Ç) is a continuous positive function 
on [a, /?]. Consider 

(6) J = | Q ; <2( ƒ ) = t ihAtd ; it e D, at complex, r fixed!. 
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The space $ has a reproducing kernel K(z9 w) on D. It is easy to establish 
the relationship 

inf Hg - Lll = inf f f œ(^)K(z^)di - £ a . K ^ d V l 
QeÊ ai^iJDlJtx j = i | 

e.g., see [1], [2], [9], and [3]. 

III. Define a = {ƒ; feCn~l[0,1],/(B_1) absolutely continuous and 
/ w eL 2 [0 , l ]} and impose the seminorm ||/| |2 = ^0\f

(n\x)\2 dx on St. 
Consider the set of all functionals 

3 = J Q; Q(f) = t atMd; <h real, 0 < «i < «2 < • • • < €r < l} . 

The problem is to determine <2 e Ê. achieving 

(7) inf sup | |^ö(/) | | where^ e ( / )= f M)d^-Q{f). 
Qe£ WfWiUfe» JO 

It can be shown (e.g., see [3]) that the problem of (7) is equivalent to ascer­
taining the best nonlinear approximation according to 

inf f'| f (x - Orx # - "l «,*' - £ Ci(x - W 
atfct^i J0 I JO i=0 i=l 

2 

dx 

where the ai9 ci9 Çt fulfill certain side constraints. Here K(x, Ç) = (x — £)+ 1 

= (x- Ç)"-1 for x ^ & =0 for x < {. 
We postulate henceforth, unless stated to the contrary, that X(^, rj) is 

extended totally positive (ETP) on T x T; i.e., for any selection of £f e T 
and rç,. G T satisfying £x ^ £2 ^ • • • ^ £p and rjx ^ rj2 <* -- ^rjp(p arbi­
trary), the compound Fredholm kernel satisfies 

(8) K[p](e^) = det| |K*(^,^)ll>0, 

with the convention that for groups of equal Ç values (say e.g., ^ = Ç2) 
the second row in the determinant of (8) is replaced by {(3K/3£)(£i,*h), 
(dK/dÇ)(Çl9 rj2) • • • (dK/d£)(Çl9 rjp)} and correspondingly with larger blocks 
of coincident values higher derivatives are inserted. For coalesced rj values 
the analogous partial derivatives in the second variable appear. The con­
cept of extended total positivity is stronger than that of strict total positivity 
which insists on strict inequality in (8) only when the £'s and rfs are 
distinct. The assumption of total positivity has wide scope in analysis and 
applications; e.g., see [4]. 

With reference to Example II, the reproducing kernel of a simply con­
nected region D symmetric with respect to the real line is indeed ETP as a 
function of £, rj varying on R n D (R = real line (see [9])). The kernel of 
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Example III, <!>(£, rj) = (Ç — Y\)n+ \ is totally positive but not ETP. Never­
theless, most of the results announced below extend to this case with the 
proofs requiring more intricate care. 

The first result, of independent interest, essential for our treatment of the 
minimizing problem (4) delineates bounds on the number of zeros of the 
function 

(9) g(x)= \K(x^Mi)di-P(x) 

where P(x) is of the form (3). The notation Z(g ; T) denotes the number of 
zeros of g(x) on T, counting multiplicities. The expression (9) is referred to 
as an extended monospline (abbreviated (EM)). Here co(Ç) is continuous and 
positive on [a,/T|. 

THEOREM 1. Let K(x, Ç) be ETP on T x T (see (8)) and let [a, jS] be an 
interval properly contained in T. Then 

(10) Z(g; D ^ m + n + £ ( f t + l ) - E 

where E is the number of knots among (rju r\2,..., rjt) of even multiplicity or 
which lie exterior to the open interval (a, /?). In the special case where P in (3) 
has the knots at a and /? deleted, then the bound in (10) is diminished by m 4- n. 

An extended monospline g(x) is said to have full multiplicity if equality 
prevails in (10). The following converse theorem is available. 

THEOREM 2. Let K(x, £) be ETP onT x T Let m, n and fih i = 1,2,...,*, 
be prescribed and stipulate each \x{ to be odd. Let xt ^ x2 S * • * ^ Xy> all 
xt e T9 be given with y = m + n + £•= x (fit 4- 1). The number of repeated x 
values indicates the multiplicity of that x. Then there exists a unique extended 
monospline g(x) of the form (9); i.e., ahbh ckl and fyx < rj2 < • • • < *7t, with 
rjiefaf}) exist which define such that g(x) vanishes precisely on the set 

r = Wï. 
This result incorporates a version for extended monosplines of the 

fundamental theorem of algebra for monosplines set forth in [7]. Since we 
require here that K(x, Ç) is ETP, the case of [7] is not subsumed in the 
present context. In the special case where m = n = 0 and each / ^ = 1, the 
proof of Theorem 2 can be accomplished by appeal to the existence of 
principal representations for "moment points" occurring in moment 
spaces of Tchebycheff systems (see [8, Chapter 2]). In this connection 
when fa = 1 the coefficients of K(x, £f) in (2) for an extended monospline 
with zero set of full multiplicity are positive. The proof for the general case 
of Theorem 2 is quite elaborate involving a continuity technique and the 
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implicit function theorem. The result of Theorem 2 with multiple knots is 
due to A. Pinkus and this author. 

A formulation of Theorems 1 and 2 in the presence of additional bound­
ary constraints satisfied by g{x) is also available. For the case of poly­
nomial monosplines with boundary conditions we refer to [5] and [6]. 

We now state the basic characterization for the approximation problem 
of (4). 

THEOREM 3. Let K(£9 rj) be ETP on T x T and (a, p) cz T properly. Let 
1 ^ p ^ oo and let a be a sigma finite measure with an infinite spectrum. 

(i) Then 

inf [flfKtf, (11) inf K(Z,f,)œ(fi)<bi-P(Q\ Pe(dZ) 
i/p 

is achieved for some P* e ^>n>r with each juf = 1 (i.e., with all knots simple) 
so that 

n —* r)*K m - 1 rpJÇ r 

p*d)= I af—-.&*)+ £ bf—[(i,P)+ £ crm,r,f). 
i=0 0r\ i=0 0r\ i = l 

Moreover, r\{ e (a, fi), cf > 0 and 

(12) g(x)= f K{x,-r,)dt,-P*{x) 
•/a 

is an extended monospline with a zero set of full multiplicity. 
(ii) For p = 2, the parameters determining P* may be calculated such that, 

where L(x, y) = j T K(x, Ç)K(y, £)*(#), 

pP n-l sir m - 1 s i r 

h(x) = L{x,yMy)dy- £ af—r(x,oc)- £ bf-^(xj) 
J* i = 0 0r\ i = 0 CY\ 

r 

- £ cf L(x, rjf) 

satisfies 

h{a) = ft'(<x) = . . . = *<"" "(a) = 0, Mi?) = #(/*) = • • • = ft(w~ 1}G?) = 0, 
(13) fcfo?) = KW ) = 0, i = l , 2 , . . . , r . 

(iii) For p = oo, the best approximation is characterized uniquely by the 
equi-oscillation property that HgMlL ^ c and there exists k — 2r + m + n 
points x? < x°2 < • • • < x° (a <; x?, x£ ^ J?) satisfying g(xf)g(xf+i) < 0 
and|g(x?)| = c, i = l,2,...,k. 

The question of uniqueness for the minimizing P* in (11) (except for the 
L^ case) is unsettled. 
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A key tool in the proof of Theorem 3 and of intrinsic basic importance is 
what we call the improvement theorem. 

THEOREM 4 (IMPROVEMENT THEOREM). Let g(x) be an extendedmonospline 
(EM) where each \i{ is odd and suppose g(x) has a zero set T of full multiplicity 
so that 

t 

Z(g(x); T) = m + n+ £ (jit + 1) = m + n + 21. 

Then there exists a unique EM 

g(x)= f K(x,£)co(£)^-P(x) 
Ja, 

where P vanishes precisely on T, exhibits I simple knots and compared to g(x) 
satisfies the global inequality 

(14) \g(x)\ ^ |g(x)|, for all x e T, 

with equality prevailing everywhere iff g(x) = g(x). 

The assertion of Theorem 4 says in essence that in most norms a multiple 
knot quadrature approximation for extended monosplines can always be 
improved by a simple knot approximation. The result of Theorem 4 also 
applies for ordinary polynomial monosplines. 

Detailed proofs of these and related theorems concerning orders of 
approximation as r -* oo with application of these results to the models of 
I—III will be published elsewhere. 
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