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In this note I announce a solution to the 

GENERALIZED MINKOWSKI PROBLEM. Find an embedding of the 
m-sphere Sm into Euclidean space i£w+1, whose Gaussian curvature is 
preassigned as a continuous, strictly positive function on Sm. 

Such embeddings are shown to exist without exception for m è 2, 
but with certain necessary exceptions for rn = l, the result in this 
case standing as a converse to the classical Four Vertex Theorem for 
plane curves. 

While the above problem lies in the realm of differential geometry 
in the large, its solution comes via differential topology by studying 
deformations of normal vector fields on a closed smooth manifold 
Mm in Rm+l. 

Detailed proofs may be found in [9], while a leisurely exposition of 
the converse to the Four Vertex Theorem appears in [lO]. I am 
indebted to Eugenio Calabi, Jerry Kazdan and Frank Warner for 
many helpful conversations, and particularly to Warner for intro­
ducing me to the problem in the first place and for pointing out its 
relation to the study of normal vector fields on spheres. 

1. The generalized Minkowski problem. In the classical Minkowski 
problem, one starts only with those continuous strictly positive 
curvature functions K:Sm—+R1 which satisfy the integrability con­
dition fs

m N(p)/K(p) dQ = 0, where N(p) is the unit outward normal 
vector to the unit m-sphere Sm in Rm+1. In return, these preassigned 
curvatures are realized not by arbitrary embeddings of Sm into 
Rm+1

t but by inverses of Gauss maps, and one also gets a correspond­
ing uniqueness theorem up to parallel translations. The reader can 
find an historical survey of this problem in [9]; the original sources 
are Minkowski [13], [14], Bonnesen and Fenchel [6], Lewy [12], 
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Alexandrov [ l ] , [2], [3] Pogorelov [17] and Nirenberg [16]. 
In the generalized Minkowski problem, all continuous strictly 

positive functions K:Sm—>Rl are considered, and we seek to realize 
these preassigned curvatures by unrestricted embeddings of Sm 

into Rm+l. There is no corresponding uniqueness result. 
The generalized Minkowski problem in R* would be immediately 

solved by an affirmative answer to the following question posed by 
Nirenberg : Given a smooth positive f unction K : S2-^R1

1 does there exist a 
closed convex surface M2Q.RZ and a conformai homeomorphism G:S2 

—>M2, such that the Gaussian curvature of M2 at the point G{p) is K(p) 
for all pE:S2? The attacks on Nuremberg's question have all been via 
variational methods for partial differential equations, without suc­
cess. Recently Kazdan and Warner [ l l ] have discovered smooth 
strictly positive functions on S2 which cannot be the Gaussian curva­
ture of any Riemannian metric on S2 conformai to the standard one. 
In spite of this negative answer to Nirenberg's question for S2, the 
corresponding conjecture for other closed surfaces (with conformai 
embedding into Rz replaced by existence of a Riemannian metric 
conformai to a standard one) has met with some success. Results for 
closed surfaces of genus ^ 2 have been obtained by Berger [4], for 
the torus and Klein bottle by Kazdan and Warner [ l l ] , and for the 
projective plane by Moser [IS]. 

The solution to the generalized Minkowski problem for embeddings 
of Sm into jRm+1 with preassigned Gaussian curvature is separated, for 
convenience, into three cases: w = l , w = 2 and m a 2 . 

THEOREM I. Let k:S1—^R1 be a continuous strictly positive f unction 
which is either constant or else has at least two maxima and two minima. 
Then there exists an embedding G:Sl—^R2 of Sl onto a convex simple 
closed curve M1, such that the curvature of M1 at G(<j>) is k{fj>) for all 
0 G 5 1 . Furthermore, if k is of class Cr, then G is of class Cr+1 and M1, if 
reparametrized by arc length, is of class Cr+2for all r i^O. 

Maxima and minima are counted in the strict sense. Tha t is, a 
constant function has no maxima and minima, and a nonconstant 
function k'.S1—+R1 has one maximum and one minimum if there are 
points pi and p2 on Sl such tha t k is a nondecreasing function along 
each of the two arcs of S1 from pi to p%. Otherwise k has at least two 
maxima and two minima. 

According to the classical Four Vertex Theorem [S, p. 30], the 
conditions of Theorem I are necessary as well as sufficient, so that 
Theorem I may be regarded as a converse to the Four Vertex The­
orem. 
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THEOREM IL LetK:S2-*Rx be a continuous strictly positive function. 
Then there exists an embedding G:S2-+R* of S2 onto a closed convex sur­

face M2 whose Gaussian curvature at the point G(p) is K(p) for all 
p(~S2. Furthermore, if K is of class Cr then G is of class Cr+1for r = 0 
or f or r*£2. 

THEOREM I I I . Let K:Sm—^Rl be a continuous strictly positive func­
tion, w ^ 2 . Then there exists a C00 diffeomorphism h:Sm-*Sm, diffeu­
topic to the identity, and a closed convex hyper surface MmC.Rm+l with 
Gauss "map"2 y: Mm—>Sm, such that for each Borel subset VQSm, 

\y-W\ - f — dû, 

where \ y~~l V\ is the surface area of y1 V on Mm. 
If9 under the above circumstances, y : Mm—±Sm is a homeomorphism, 

then G=y~lh:Sm—:>Mm(ZRm+l is an embedding such that the Gaussian 
curvature of Mm at the point G(p) is K(p) for allpGS™. 

Although the language is different, the content of Theorem III is 
substantially that of Theorem II , with two exceptions: we do not 
know whether the Gauss "map" y : Mm—»5W is a homeomorphism, and 
even if so, we cannot predict the smoothness of G from that of K. 
I t follows from [7], however, that if 7 is a homeomorphism then Mm 

is smooth of class C1. 

2. Deformations of normal vector fields. Let Mm be a connected 
closed smooth (say C*5) manifold in Rm+l, and for each point PELM, 

let N(p) denote the unit outward normal vector to M a t p. Let 
ƒ : M—>Rl be a continuous function, not necessarily positive. Then the 
vector field f(p)N(p), pÇzM, will be called a (continuous) normal 
vector field on M. Let h: M—*M be a C00 diffeomorphism, diffeotopic to 
the identity. At the same time that h slides a point p of M over to its 
image h(p), we may imagine the normal vector ƒ(p)N(p) to M a t p 
being dragged along with p, its length remaining fixed, until it be­
comes the normal vector ƒ (p)N(hp) to M a t h(p). Writing ƒ (p)N(hp) 
—fk~l(hp)N(hp)i we see tha t h moves the normal vector field 

f(p)N(p) to the normal vector field g(p)N(p), where g—fh~l. Under 
these circumstances, we say tha t the two normal vector fields on M 
are deformations of one another. 

The integral of a given normal vector field f(p)N(p) on M is the 
vector fi£f(p)N(p) dA in Rm+l, which is generally nonzero, and we 
wish to deform the vector field so as to make its integral over M 
vanish. 

2 A "map* is a possibly many-valued map. 
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THEOREM A. If MmCRm+l
f m ^ 2 , is a closed smooth manifold in 

Euclidean space, then any continuous normal vector field on M can be 
deformed so that afterwards its integral over M vanishes. 

There are some exceptions to this theorem if ra= 1, that is, if Ml 

is a smooth simple closed curve in the plane. A convex curve MlQR2 

is strictly convex if it contains no nondegenerate line segments; other­
wise it is weakly convex. 

THEOREM B. If M1C.R2 is a smooth simple closed curve in the plane, 
then any continuous normal vector field f (p)N(p) on Ml can be deformed 
so that afterwards its integral over M1 vanishes, with two exceptions: 

(1) Iff has just one maximum and one minimum and M1 is strictly 
convex, then the required deformation never exists. 

(2) Iff has just one maximum and one minimum and Ml is weakly 
convex, then the required deformation exists if and only if there is a non-
degenerate arc on M1 along which the value of f is constant but not 
extremal. 

Theorem I follows by using Theorem B to find a diffeomorphism 
h:S1-^S1 such tha t fs* (l/kh~l(<l>))N(<l>) d0 = O, and then appealing 
to standard results in elementary differential geometry. Theorems II 
and I I I follow by using Theorem A to find a diffeomorphism 
h:Sm->Sm such tha t f s* (l/Kh^ipftNfp) dO = 0, and then appealing 
to the solution of the classical Minkowski problem. 

These transition arguments are all trivial, so the real problem is to 
prove Theorems A and B. 

3. The idea behind the proofs of Theorems A and B. The proofs 
of Theorems A and B are fairly long, but the idea behind them is 
easily described by analogy with the usual topological proof of the 
Fundamental Theorem of Algebra [8, pp. 306-307]. Given a con­
tinuous normal vector field f(p)N(p) on MmC.Rm+1, m*z2, we must 
hunt for a diffeomorphism h : M—>M, diffeotopic to the identity, such 
tha t fMfh^1(p)N(p)dA=0. This is an equation with unknown h 
contained in Diff(Mm), the group of diffeomorphisms of M with the 
C00 topology. The map I:Diiï(Mm)->Rm+1, 

1(h) = ( fh~Kp)N(p)dA, 
J M 

is continuous and is the analogue of a complex polynomial function. 
During the proof we construct a certain (2m+2)-cell B2m+2 in 

Diff(.Mm). The cell B2m+2 is the analogue of the complex plane, and 
within it a root of I will be found. Inside B2m+2 we construct a certain 
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m-sphere 2™, which is the analogue of a circle of large radius in the 
complex plane. 

We then show that J(Sm) misses the origin in Rm+l
f and that 

is an essential map. Since Sw is contractible 
within .B2m+2, we are immediately assured of the existence of a root 
(indeed, infinitely many roots) of the equation 1(h) = 0, just as in 
the proof of the Fundamental Theorem of Algebra. Since B2m+Z was 
constructed to contain the identity 1M, h is diffeotopic to 1^ and 
Theorem A follows. 

Most of the proof of Theorem A also handles the positive part of 
Theorem B, but the negative aspects of Theorem B require indi­
vidual arguments. 
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