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1. Introduction. Let M be a real differentiable submanifold of a 
complex manifold X of differentiability class Ck

y l^S&^S °°. Letting 
TX(M) and TX(X) denote the tangent spaces to M and Z at ^cGitf, 
we see that TX(M) is a real linear subspace of the complex vector 
space TX(X). We say that M is a totally real submanifold of X if for 
each point xÇzM, TX(M) contains no nonzero complex subspaces of 
T.(X). 

There are many examples of totally real submanifolds (see, e.g. 
Nirenberg-Wells [8]), the simplest examples being a real curve in X, 
the distinguished boundary of a polydomain, or RnC.Cn. The geo­
metric nature of a totally real submanifold implies that it behaves in 
many cases like this last example. In particular, the Weierstrass ap­
proximation theorem tells us that holomorphic functions on O are 
dense in the Banach space of continuous functions on a compact sub­
set KC.RndCn in the supremum norm. There have been various in­
vestigations recently generalizing this type of theorem to compact 
subsets of totally real submanifolds (see Cirka [ l ] , Hörmander-
Wermer [6], Nirenberg-Wells [8]). In §2 we formulate our main re­
sults on holomorphic approximation, in which we improve on the 
previous known results by (a) extending the domain of definition of 
the approximating functions, (b) minimizing the differentiability re­
quirements for the submanifold, and (c) requiring that the approxi­
mation be uniform on K along with uniform approximation of all 
derivatives up to the order of differentiability of the submanifold. 
In §3 we formulate sheaf injection theorems for hyperfunctions on a 
totally real submanifold of a complex manifold. For instance, The­
orem 4.1 says that the sheaf of germs of distributions is canonically 
embedded in the sheaf of germs of hyperfunctions on a C00 totally 
real submanifold of a complex manifold (cf. Martineau [7] and 
Harvey [4]). 
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Proofs of our results are discussed only briefly; details will appear 
elsewhere. 

2. Holomorphic approximation theorems. Let X denote throughout 
this paper a paracompact complex manifold of complex dimension n. 
Suppose K is compact in U which is open in X. We denote by 0(U) 
the Fréchet space of holomorphic functions on U, &(K) the holo­
morphic functions on K (inductive limit of Fréchet spaces 0(£/)> for 
U open and UZ)K with the inductive limit topology), Ck(U) the 
complex-valued functions on U which are k times continuously dif­
ferent iate , Ck(K) the Banach space of limits of C00 functions 
defined near K in the C*-norm, Ogifegoo. Let C°(K) = C(K). The 
C*-norm on K, for k finite, is defined by ||/[(.K:^ = supxeis:; \a\sk \ Daf{x) | , 
the derivatives being defined locally, and the norm being defined 
globally by means of a partition of unity. Our principal result is the 
following theorem. 

THEOREM 2.1. Let M be a Ck totally real submanifold of X, where 
1 ^ k ^ oo, and let Kbea compact subset of M. Then there exists an open 
Stein neighborhood U of M in X such that the natural restriction map­
ping 

0(U) -> Ck~l(K) 

has dense range. 

In particular, if M is C1 then we have the 

COROLLARY 2.2. ö(U) is dense in C(K). 

The proof of Theorem 2.1 breaks down into two parts: Part I, 
showing that there is a UDM so that 0(£/)--»0(i£) is dense; Part II , 
showing that 6(K)—^C*""1^) is dense. Part I follows by the construc­
tion of a strongly plurisubharmonic exhaustion function of the appro­
priate type and standard Runge approximation arguments yielding 
the following generalization of Grauerfs tubular neighborhood re­
sults in [2] (the real-analytic case). 

PROPOSITION 2.3. Let M be a Cl totally real submanifold of X then 
there exists an open Stein neighborhood U of M in X such that K is ô( U)-
convex. In particular, K is 6 (M)-convex. 

Part II is shown by two different methods outlined in §§3 and 4. 
In previous papers the uniform approximation (Corollary 2.2) was 
obtained with U a small neighborhood of K> which did not necessarily 
contain M. Tha t 0(K) has dense image in C{K) was proven in [8] 
only for k*z4:n — l (with similar dimensional restrictions in [ó]), 
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whereas we now obtain this result for k = l.2 The techniques we use 
involve Ramirez integral kernels which invert d in strongly pseudo-
convex domains, giving good uniform estimates (see e.g., Ramirez 
[9], Grauert-Lieb [3]). 

3. Global holomorphic kernels for the d-operator in Cn. If M is a 
C1 totally real submanifold of O , then there exists a C2 strongly pluri-
subharmonic function <f> denned near M whose vanishing defines M. 
Let T(e) = {x:<l>(x) < e } . We have the following theorem. 

THEOREM 3.1. Let Kbea compact subset of a Ck totally real submani­
fold M of Cn, where 1 S k S °° • Then there exists a domain of holomorphy 
U containing K such that if o) is a C00 d-closedform of type (0, 1) with 
compact support in T(rj)r\U which vanishes to order k on M> thenf for 
each €, with 0<e<rj/3t there exists a function u«ÇzC°°(T(e)r}U) such 
that 

due = o) in T(e) H U, 

and 

\\ut\\K,k ^ Ce||co||8UpP((,fo, 

where the constants Ct—*0 as €—>0. 

Theorem 2.1, for X = C n , now follows easily from Theorem 3.1 
combined with Proposition 2.3. The proof of Theorem 3.1 proceeds 
by constructing a holomorphic kernel Q€(f, z) denned in the closure 
of T(3e)r>\U which is an (n, n — 1) form in the f variable and holo­
morphic in z. This form has a singularity at f = 2 of order | f — z\ 2nr~1, 
and for f Gôr(3e) , 12€(f, z) is holomorphic in 2, for zÇzT(e)r\U. Ker­
nels of this type were first constructed by Ramirez [9] in a single 
strongly pseudoconvex domain. We have modified his construction 
in a suitable manner to conform to our given geometric problem. The 
domain T(e)r\U is only strongly pseudoconvex on the T(e) part of 
the boundary, but this suffices for the construction we carry out. The 
solution ue in Theorem 3.1 is defined by 

We = I !2« A CO, 
J T(Zt)ClU 

and the estimates in Theorem 3.1 follow from careful estimates of the 
Z^-norms of £2e(f, 2), uniform in s £ i £ , keeping track of its dependence 
on e. 

2 Cirka [ l ] also states that 6(K) has dense image in C(K) if M is C1, but there 
seems to be a gap in his proof. 
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4. Hyperfunctions on totally real submanifolds. Let ek denote the 
sheaf of germs of CMunctions on a C*-manifold M. Let £>£ denote 
the sheaf of germs of distributions of order k on M, i.e., £>i(0) for 
an open set fl is denned to be the dual of the space Cj(Q) of compactly 
supported (^-functions on Q with the usual inductive limit topology. 
We let 3D' = S)* and 9TC = £>o> the sheaf of germs of regular Borel mea­
sures on M. 

Suppose M is a C* totally real submanifold of a complex manifold 
X. The sheaf (B of germs of hyperfunctions on M (of type 0n) is, by 
definition, the sheaf generated by the presheaf U—>HunM(Ui Œn). 
Here HunniU, Qn) denotes the nth relative cohomology group of U 
modulo U—M with coefficients in Q,n (the sheaf of germs of holo-
morphic w-forms). Since each point in M has a compact neighborhood 
KCM with 0(K) dense in C{K) (see Theorem 4.2 below) the set M 
is a "totally real set" in the sense of [5]. Consequently Sato's theory 
of hyperfunctions, as developed in [5] (Theorem 3.9 and its Corollary 
3.10), is valid for M. In particular, since each compact set KCM is 
holomorphically convex, Corollary 3.10 in [5] says that the space 
6(K)', of analytic functionals, is isomorphic to YK(M, (B), the space 
of hyperfunctions supported in K. The following theorem tells us 
that a distribution on I f is a special case of a hyperfunction. 

THEOREM 4.1. Let M be a Ck totally real submanifold of X> where 
1 ^ k ^ oo. Then there is a natural sheaf injection of £>i_! into (B. 

This theorem, which is a purely local result, has as an immediate 
consequence that, for each compact set KCM, YK{M, £>£_i)== 
T(K, C*-1)' is injected into TK(M, (B)SO(JS: ) ' . By the Hahn-Banach 
theorem this implies the global approximation Theorem 2.1 (or more 
correctly that e(K) is dense in Ck~l(K)). 

The crucial ingredient in the proof of Theorem 4.1 is the following 
strong local approximation theorem. 

THEOREM 4.2. Let M be a Ck totally real submanifold in Cn. If pGM, 
then there is a neighborhood U of p so that iffCCKU), and K is a com­
pact subset of M with supp fC\K = 0 , then there exists a sequence ƒ,-, 
with fjC0(Ur\M), and such that 

(a) h-+fin Ck-l{Ur\M), 
( b ) ^ O m 0 ( I ) . 

The first approximation in Ck~l{UC\M) is uniform on compact sub­
sets with all derivatives up to order k. In part (b) we construct the 
fjÇzG(Mr\U) in a fixed open neighborhood V of K with ƒ,—>0 uni­
formly on compact subsets of V. This theorem is proved by setting 
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up and solving a local 5-problem with estimates, similar to the tech­
nique described in §3—except more explicit. We find a local family 
of Cauchy-Fantappié kernels defined explicitly in terms of Taylor 
polynomials of a strongly plurisubharmonic function $ whose vanish­
ing defines M. 

REMARK. This second proof of Theorem 2.1 using hyperfunctions 
avoids the use of the global holomorphic kernels of §3, and is valid 
on arbitrary complex manifolds. The global kernel is replaced by a 
localization technique (Theorem 1.3 in [5]) borrowed from Sato's 
theory of hyperfunctions. 
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