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1. Introduction. Let X be a real normed linear space, and let 
S(X) be its unit ball, with the boundary dX(X). If dim X ^ 2 , 5X 

denotes the inner metric of d*E(X) induced by the norm (cf. [l, §3]). 
If no confusion is likely, we write 2 , d%, S. In [ l ] we introduced and 
discussed parameters of X based on the metric structure of d2; 
among them are D(X) = sup{ô(£, q):p, g E d S } , the inner diameter 
of 32, and M(X) = s u p { ô ( - p , p):pEd%}, half the perimeter of 2 . 
Obviously, M(X) SD(X), and it was conjectured [l, Conjecture 9.1] 
that M(X) =D(X) in every case, i.e., that "no pair of points of d2 is 
more distant in d2 than the most distant antipodes." This equality 
was shown to hold if dim X = 2 or dim X = 3 [l, Theorems 5.4, 5.8], 
if D(X) = 4 [3], if X is an L-space [4]. 

In this paper we explode this conjecture by showing that M(X) = 2, 
D(X)=3 for X = Co((0, l ] ) , the space of continuous real-valued 
functions on (0, 1 ] that tend to 0 at 0, with the supremum norm. We 
observe that this failure of the conjecture is "as strong as possible," 
since 2D(X) ^ M(X) +4 for every normed space X [3, Theorem l ] . 
The present result is a simple specific instance of the evaluation of 
M(X), D(X) for many spaces of continuous functions, which will be 
carried out in a forthcoming paper. I t has appeared useful, however, 
to give a separate account of this very simple example. In addition, 
Lemma 1 is required for the general theory. The conjecture remains 
unresolved, and interesting, for spaces of finite dimension greater 
than three. 

We shall use the terminology, notations, and elementary results of 
§§1-3 of [l ]. In particular, a subspace of X is a linear manifold in X, 
not necessarily closed, provided with the norm of X. If F is a sub-
space of X, we obviously have 

(1) t7(p,q) è «(#,?), p,qed2(Y). 

Instead of dealing with the space Co((0, 1 ]), we prefer, for technical 
reasons, to consider the space CV([ — 1 , l ] ) of odd continuous real-
valued functions on [ — 1, l ] with the supremum norm. The two 
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spaces are obviously congruent, and therefore any metrical property 
of one implies the same metrical property of the other. In the rest of 
this paper, X shall always stand f or Cv{[ — \, l ] ) . 

2. The perimeter. We consider the special function uE:X defined 
by «(*)=/, / G [ - l , 1]. 

LEMMA 1. S(—u, u)=2. 

PROOF. For each given integer » > 1 , let Rn = lco( {l, • • • , n}) be 
the Banach space of sequences of length n of real numbers, with the 
maximum norm. The proof will depend on the computation of the 
length of certain polygonal curves in 32 (Rn), carried out in [2]. 

Let Yn be the closed subspace of X consisting of the piecewise 
linear odd continuous real-valued functions on [ — 1, 1 ] with "corners" 
a t most at ±(2& — l)(2» — l ) - 1 , fe = l, • • • , ». Define the linear 
mappmg^n:Yn^Rnby(^nf)(j)^f((2n-4j+3)(2n-l)-l)J = l1 • • -, 
n. Since the mapping j*-*2n~4j+3: {l, • • • , »}—>{ ±(2k — 1): 
& = 1, • • • , n\ is injective and the image contains exactly one of 
each pair of opposites, <ï>w is bijective; since a piecewise linear func­
tion attains its extrema at "corners," <3?n is isometric. Hence <£w is a 
congruence. 

Now w G F w ; w e consider $nuÇzd1,(Rn) and compute 

(2) (*nu)(j) = (2n ~ 4/ + 3)(2n - l )"1 , j = 1, • • • , ». 

On the other hand, we consider poE:dZ(Rn) given by 

(3) Po(j) = (» - 2/ + 1)(» - I)"1 , i = 1, • • • , »; 

we know from [2, Lemma 4] that 

(4) **.(-#<>, *o) ^ 2»(» - I )" 1 

(in fact, equality holds). Now (*n«)(l) =po(l) = 1, so the straight-line 
segment with endpoints &nu, po lies entirely in d*E(Rn); therefore, 
from (2), (3), 

i(p0, ®nU) = \\$nU — p0\\ 

(5) = 2(2» - l)- i(n - l ) - 1 max{jf - Uj = 1, • - • , »} 
= 2(2» - I)"1 . 

Since 4>n: Fn—»i?n is a congruence, (1), (4), (5) yield 

2 = ||tf — (~U)\\ g Ô( — «, «) ^ ÔFn( — ̂ , «) = fen(--#»«, >̂n̂ ) 

^ fen(-$»«, -po) + àRn(-pO, Po) + àRn(pO, $nU) 

g 4(2» - l ) - 1 + 2»(» - l ) - 1 = 2 + 2(4» - 3)(» - \)~l(2n - l ) " 1 . 
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The integer n was arbitrarily great; we conclude that S(w, —u) = 2. 

THEOREM 2. For every j'GdS, 5 ( - / , / ) = 2 . Consequently, M(X) = 2. 

PROOF. Since [ — 1 , l ] is connected a n d / i s odd, we have / ( [ — l, l]) 
= [•—1,1]. Since the composition of odd functions is odd, we conclude 
that the linear mapping g*~*g of:X—*X is isometric, hence a con­
gruence of X onto a subspace Y of X, Now (±u) o ƒ = ± / G F; by 
Lemma 1 and (1) we therefore have 

2 = «(—ƒ,ƒ) ^ «*(-ƒ,ƒ) = àr(-uof, uof) = « ( - « , «) = 2. 

3. The inner diameter. 

LEMMA 3. Define v, wGdS 63/ 

f (0 = - <-t) = * - i + I * - i I , 0 = / = l , 

W(/) = - w ( -o = - * - § + | * - i | , 0 = / = 1. 

7 7 ^ s(v, w) —3. 

PROOF. Let c be any curve from v to w in dS, and r a given number, 
0 ^ r < l . Since ||»--s>|| =0 , ||z>—w|| =2 , there exists a point 2 on c such 
that ||s—fl|| =r. Since s G d S there exists /G [ — 1» l ] such that s(0 = 1 . 
Now v(t) ztz(t)~-\\z—v\\ = 1 — r>0. From the definition of v and w we 
have / > i , whence w(t) = — 1. Then 

/(c) = ||w - 2(| + \\z - v|| = I w(0 - 2(0 I + r = 2 + r. 

Since r was arbitrarily close to 1, we have /(c) = 3. Since c was an 
arbitrary curve from v to w in 52, we indeed have 5(z>, w) = 3 . 

REMARK. I t is easy to show directly that ô(v, w) = 3 ; there exists, 
in fact, a curve from v to w in #2 consisting of two straight line seg­
ments end-to-end, of respective lengths 1 and 2: the intermediate 
endpoint is sGdZ) defined by 

2(0 «= - * ( - / ) = / - f + 3 | / - | | , 0 = / = 1. 

The verification is left to the reader. 

THEOREM 4. £>(X)=3. 

PROOF. By [3, Theorem l ] , 2D(X) £M(X)+4t; since M"(X) =2 by 
Theorem 2, we conclude, using Lemma 3, that 

3 S ô(v, w) S D(X) g | (2 + 4) = 3, 

so that equality holds. 
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