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I t is known that if H is an aposyndetic nonseparating plane con
tinuum, then H is locally connected. This follows from a result of 
Jones' [2, Theorem 10] that if p is a point of a plane continuum H and 
H is aposyndetic at p, then the union of H and all but finitely many 
of its complementary domains is connected im kleinen at p.2 As a 
corollary of these results, each aposyndetic nonseparating plane 
continuum is arcwise connected. Closely related to the notion of an 
aposyndetic continuum is that of a semiaposyndetic continuum, 
studied in [ l ] . A continuum M is semiaposyndetic if for each pair of 
distinct points x and y of M, there exists a subcontinuum F of M such 
that the sets M—F and the interior of F relative to M each contain 
a point of {x, y}. Note that a nonseparating semiaposyndetic plane 
continuum may fail to be locally connected. The main theorem of 
this paper is that each semiaposyndetic nonseparating plane con
tinuum is arcwise connected. A complete proof of this result will 
appear elsewhere. For definitions of unfamiliar terms and phrases see 

[4]. 
Throughout this paper 5 is the plane and d is the Euclidean 

metric for S. 
DEFINITION. Let E be an arc-segment (open arc) in S with end-

points a and b, D be a disk in a continuum M in 5, and e be a positive 
real number. The arc-segment E is said to be e-spanned by D in M if 
{a, b] is a subset of D and for each po in t s in a bounded comple
mentary domain of D\JE, either d(x, E)<eorx belongs to M. 

DEFINITION. A point y of a continuum M cuts x from z in M if x, y 
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2 A continuum H is said to be aposyndetic at a point p of H with respect to a point 

q of H— {p\ if there exist an open set U and a continuum L in H such thatpG UC.L 
C.H— {q}. A continuum H is said to be aposyndetic at a point p if for each point q 
of iJ— {p} t H is aposyndetic at p with respect to q. If H is aposyndetic at each of its 
points, then H is said to be aposyndetic (Jones). 
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and z are distinct points of M and y belongs to each subcontinuum of 
M which contains {x, z}. 

The following lemmas are necessary preliminaries. 

LEMMA 1. If an arc-segment E in S of diameter less than e with end-
points a and b is e-spanned by a disk D in M (a continuum in S), then 
there exists an arc-segment M(E) in M with endpoints a and b such 
that for each point x of M(E), d(x, E) ^2e . 

LEMMA 2. If M is a semiaposyndetic metric continuum and x, y and 
z are points of M stick that y cuts x from z in M, then z does not cut x 
from y in M. 

THEOREM. If M is a semiaposyndetic continuum in S which does not 
separate 5, then M is arcwise connected. 

PROOF. (SKETCH). Let p and q be distinct points of M. According 
to Jones' cyclic connectivity theorem [3], if no point cuts p from q in 
M y then p and q belong to a simple closed curve in M and are there
fore the extremities of an arc lying in M. Suppose there exists a point 
which cuts p from q in M. Let K be the closed subset of M consisting 
of p, q and all points x such that x cuts p from q in M. Define the 
binary relation R on K as follows. For distinct points x and y of K, 
x R y if x cuts p from y in M or x = p. Using Lemma 2, one can prove 
that R is a natural ordering of K as defined by G. T. Whyburn [5, 
p. 41]. Hence there exists an arc A not necessarily in S containing K 
such that p and q are endpoints of A and R is the order induced on K 
from A [5, Theorem 6.4, p. 56]. 

Let E be a component of A — K with endpoints a and b. Assume 
without loss of generality that either a cuts p from b in M or a=p. 
Suppose there exists a point x such that x cuts a from b in M. One 
can prove that the point x belongs to K, a Rx and x Rb. Hence x 
must belong to E. This contradicts the assumption that E is a subset 
of A —K. Therefore no point cuts a from b in M. Let C denote the set 
of components of A —K. I t follows from Jones' cyclic connectivity 
theorem that for each element E of C, there exists a simple closed 
curve J(E) in M which contains the endpoints of E. Since M does 
not separate 5, there exists a disk N(E) in M such that the endpoints 
of E are in N(E). Note that if C is finite, one can easily define an arc 
in M with endpoints p and q. 

Assume that C is infinite. For each element E of C define £ * to be 
the straight line segment in S which has the endpoints of E as end-
points. Since M is semiaposyndetic, for each positive real number e, 
the set consisting of all elements E of C such that E* is not e-spanned 
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by a disk in M is finite. For each positive integer n, let Cn be the 
finite set consisting of all elements E of C such that either the diam
eter of E* is greater than or equal to l/2n, or E* is not l/2w-spanned 
by a disk in M. Let i?i = Ci, and, for n = 2, 3, 4, • • • , let Hn = Cn 

— Cn_i. For each element E of C, define the arc-segment M(E) as 
follows. Assume that a and b are the endpoints of E. There exists an 
integer n such that E belongs to Hn. If n — i, define M(E) to be an 
arc-segment in N(E) with endpoints a and &. According to Lemma 1, 
if n> 1, there exists an arc-segment ikf(E) in M with endpoints a and 
b such that for each point x of M(E), d(x, £*) ̂ 1 / ( ^ — 1). One can 
prove that for each element X of C, ( Z U l U e c - m M ( £ ) ) f W p O 
= 0 . For each element E of C, let / ^ be a homeomorphism from E 
onto M(E). Define the function ƒ from A to Z U (iEec M(E) as 
follows. For each point x of i£, define ƒ (x) =x. If x is a point of A — K, 
define/(x) =/E(X) ( X E E ) . The function ƒ is a homeomorphism. Hence 
K^J UEEC M(E) is an arc in M from p to g. I t follows that M is arc-
wise connected. 
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