BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 77, Number 4, July 1971

INFINITE RESISTIVE NETWORKS

BY HARLEY FLANDERS

Communicated by S. Smale, January 4, 1971

An *infinite resistive network* N consists of a connected, locally finite, oriented, infinite graph with branches B_1, B_2, \cdots . To each branch B_i is associated a resistance $r_i \ge 0$. We are also given a voltage source, i.e., a finite 1-cochain E', and a current source, i.e., a finite 0-chain i satisfying $\partial_0 i = 0$.

For each (real) 1-chain $C = \sum a_i B_i$, define ||C|| by $||C||^2 = \sum a_i^2 r_i$.

THEOREM 1. There exists a unique 1-chain I such that:

(i) (Kirchhoff's current law). $\partial I + i = 0$.

(ii) (Kirchhoff's voltage law). For each finite cycle Z,

$$\langle E', Z \rangle = \langle R(I), Z \rangle,$$

where if $I = \sum_{i} a_{i}B_{i}$, then R(I) denotes the 1-cochain $R(I) = \sum_{i} a_{i}B'_{i}$. Of course $(B'_{i}, B_{i}) = \delta_{ij}$.

(iii) (Finite power). I is square summable, i.e., $||I|| < \infty$.

(iv) There is a sequence $\{C_j\}$ of finite 1-chains such that $\partial C_j + i = 0$ and $\|C_j - I\| \rightarrow 0$.

THEOREM 2. Let N_j be any sequence of subnetworks such that $N_1 \subset N_2 \subset \cdots$ and $\bigcup N_j = N$. Suppose N_1 is large enough to support the voltage source E' and the current source *i*. Let I_j be the unique current on N_j given by Theorem 1. Then $||I_j - I|| \rightarrow 0$, where *I* is the unique current on N.

The proofs of these results, corollaries, and a full discussion will appear shortly in the IEEE Trans. Circuit Theory.

TEL AVIV UNIVERSITY, RAMAT AVIV, TEL AVIV, ISRAEL

AMS 1970 subject classifications. Primary 94A20; Secondary 05C20, 46C05. Key words and phrases. Infinite networks, resistive networks.