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1. Introduction. Let (8') be the space of Schwartz distributions 
with compact supports defined on R. Let (0„) be the space of dis­
tributions denned on the space (0a) of all infinitely differentiate 
complex-valued f unctions ƒ on R such that f(t) = 0(\t\a) and fip)(t) 
= 0(\t\«)îorallp(\t\->oo). 

In this announcement we extend the famous Plemelj formulas to 
the distributions in (8') or (ö'a). A distributional extension in another 
direction has been given in [ l ] . The overlap with the present ap­
proach is little. The Plemelj numerically-valued relations are dis­
cussed in detail in [2], [5]. 

Paralleling the classical version, we will consider distributions T 
that are contained in (8') or (ö'a) and define the generalized Cauchy 
integral of Thy f(z) = (l/2wi) (Tt, l / (*-s)>, Im(2) 5*0. 

2. Statement of results. In what follows, D+ and D~ denote the 
open upper and the open lower half-planes, respectively. 

THEOREM 1. If TE(&') and 

for s £ D 1 , then f,± = lime^+0 T±(t±ie) exist in (3D') and 

(1) f+ - t- = T, 

(2) f++r- = --i(r*vpiy 

THEOREM 2. If TE(6'a) for ~l^a<0 and 
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for zÇzD*, then T± = lime++0 t±(t±ie) exist in (6f
a) and the formulas 

(1) and (2) are valid. 
If TE: (0'a)for ot^—lthe same formulas are valid in (£)')• 

THEOREM 3. If T £ (öf
a) for arbitrary fixed a and 

kl / 1 \ 
T±(z) = (Tt, ) 

2wi\ (t-z)kW 
for zED±, then 

t+ — f~ — T(k) 

f++ f- = ( r<*> * vp — ) 
wi \ t ) 

in (3D'). One supposes l/(t-z)k+1 = 0(\t\ a ) , lm(z)^0. 

THEOREM 4. In the above theorems the decomposition of distributions 
into the difference of two distributions is unique. 

Proofs are based on the results in [3], [4] involving a criterion for 
a linear form to be a distribution, theorems on convergence of dis­
tributions and certain facts on the distributional analytic continua­
tion. A complete account will appear elsewhere. 

The announced theorems are applicable directly on some classical 
problems formulated in the sense of distributions in (8') and (0«) 
(for example, a Hilbert boundary problem for the half-planes, singu-
ular convolution equations). 
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