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The results given in this note were obtained by applying to measure 
theory the methods of nonstandard analysis developed by Abraham 
Robinson [5]. Amplifications of these results with proofs will be 
published elsewhere.2 I t is shown here that there are linear mappings 
from an arbitrary, real Lw space and its dual Lw into Euclidean 
co-space Ew, where co is an infinite integer. Finite valued, finitely 
additive measures on the underlying measurable space are also 
mapped onto elements of .£>, and integrals are infinitesimally close 
to the corresponding inner products in E<°. Yosida and Hewitt's 
representation of Lw [6] is an immediate consequence of these results. 

In general, we use Robinson's notation [5]. If we have an enlarge
ment of a structure that contains the set R of real numbers, then *R 
denotes the set of nonstandard real numbers and *Ny the set of non
standard natural numbers. A set 5 is called *finite if there is an 
internal bijection from an initial segment of *iV onto 5 ; a *finite set 
has all of the "formal" properties of a finite set. Given b and c in *R, 
we write bo^c if b — c is in the monad of 0; when b is finite, we write °b 
for the unique, standard real number in the monad of b. 

1. The partition P and bounded measurable functions. Let X be an 
infinite set and 9ffl an infinite cr-algebra of subsets of X. Fix an en
largement of a structure that contains X} 9H, and the extended real 
numbers. There is a *finite, *2tfl-measurable partition P of *X such 
that P is finer than any finite 9tfl-measurable partition of X. That is, 
PC*$TC has the following properties: 

(i) There is an infinite integer cop£*iV and an internal bijection 
from / = { i G *N'.l Si =i wpj onto P . Thus we may write 

(ii) If i and j are in I and i?*j, then Ai¥"0 and A%C\Aj = 0. 
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(iii) *X = \JieiAi. 
(iv) For each SGafTC, let IB= {iEI'-AiC*B}. Then IB is *finite, 

and *B = \Ji<EiBAi. 
(v) Let M be the set of 9H-measurable functions on X, and MB, 

the set of bounded functions in M. For each f^MB and iÇzI, 
SUp*GAt- *ƒ(*) — inf*eA< * / ( t f ) ^ 0 . 

Given the partition P , we let E denote the set of all internal map
pings from I into *R. The set E has all of the "formal" properties of 
Euclidean w-space. We shall write Xi instead of x(i) for x £ £ and 
iÇzI, and we shall write x=y if x, yÇzE and xf^-yi, ViÇzI. Let cp 
denote a fixed internal choice function defined on I with cp(i)G^4* 
G P for each iÇiI. Let T denote the mapping from MB into E de
fined by setting T(J) (i) = *f(cP(i)) for each ƒ G MB and *£•/". 

PROPOSITION 1. Given f, g in MB and a, ]8 in P , T(af+f3g) =aT(f) 
+PT(g) and T(f)&T(g) iff^g. 

2. Measures and integration. Let *(-X*, 9fTC), or simply <ï>, denote the 
set of all finitely additive real-valued functions y on 9HX such that 
supsesiïi | M ( ^ ) I < + °°. Let U be the mapping of 3> into £ defined by 
setting U(jx)(i) = *M(-4*0 for each M G ^ and iG-f. Clearly, U preserves 
addition and multiplication by real numbers. Conversely, if eÇzE 
and both ]C*e* (#A/0) and ^iei ( — ̂ iVO) are finite in *i£, let <p(e) be 
that element of $ such that for each B GSflï, <p(e)(B) =0X)»erjB £;• 
(Note that we are writing X) instead of * 22 f° r the extension of the 
summation operator.) For each /xG^, <P(U(JA))=IJL, but in general, 
U(<p(e))^e. If M and p are in $, then U(JL)AU(V)^U(JL/\V), and 

Let<3>c and $ p be, respectively, the set of countably additive and the 
set of purely finitely additive elements of 3>. Yosida and Hewitt's 
Theorem 1.19 [6] has the following extension: 

THEOREM 1. There is a set K G * 2 ^ such that for all /xG^c, | */x| (K) 
^0 and for all v G $ P , | *v \ (*X - 2 0 = 0 . 

Without loss of generality, we assume 
If M = MC+MP is the decomposition of an element /x in $ =$c®$p, then 
when AiC*X-K, Ufa)(i) = Ufac)(*) and when i4<C2f, 1700(*') 
— t̂ (Mp) (i). We next show that there is a "maximum" null set for each 
MG^+, and we extend the Hahn decomposition theorem for countably 
additive signed measures. 

THEOREM 2. Let fi be an arbitrary, finitely additive signed measure on 
(X,Wl).Let 
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A+ = \J{Ai E P:*n(Ai) > 0}, A- = U{A< G P : V U < ) < 0}, 

and 
A0= l){AieP:*KAi) = 0}. 

Then *ix(A 0) = 0, and for each \x-null set J3 G9^, *•#C-4o. If there exists a 
^-positive set B+ and a fx-negative set B~ in SfTl with X = B+\JB- and 
B+r\B- — 0, then A+C*B+, A-C.*B-, and each A^P is either a 
*IJL-positive set or a *fi-negative set. 

If we apply Theorem 2 to Lebesgue measure on the real line, we see 
that every standard real number is in the null set A 0. 

Let * i = { M G * : M ( ^ ) = 1 and V5G9TC, M ( 5 ) = 0 or ji(JB) = l } . For 
each j G I , let ô3'£E be defined by setting 5' = 0 if i T^J and ôj = 1. 

THEOREM 3. For each jGI, <p(àj)G$i, and for each M G $ I , U(p) = S' 
for sotnejÇzï- Moreover, if {x} G'Mfor each standard point x £ J , then 
the following are equivalent statements : 

(i) Given JÇ.I, <p(àj)G^p iff AJT* {X} for any standard point x^X. 
(ii) Every free ÏPd-measurable ultrafilter ^C^TC contains a chain 

BiDB2D • • • ,wuh(]ZmlBn = 0. 

If ju is a nonnegative finitely additive measure on (X, 9fTC) a n d / ^ 0 
is jLt-integrable on X, then for each B £9fE, 

f / ^ ^ Z ( inf *ƒ(*)) V^<). 
iSlB 

We can relate integration on X to the inner product "•" in E as 
follows : 

THEOREM 4. If f G MB and p, G $ , then for each B G 9TC, 

ƒ, /dM=°E*/M0)*/iU«). 

/w particular, fx ƒ dfi~T(f) • £/(/*). 

In general, Theorem 4 is false for unbounded f unctions ƒ G-^- One 
can, however, find for each fÇzM an coG*^V such that if */w = — coV*/ 
Aco, then for each i G ^ , sup̂ GA» *ƒ«(#) — inf^e^- */w(x)^0. If M G $ and 
ƒ is jLt-integrable, then 

f ƒ <*M̂  £*ƒ.(<*(*)) W<)-
J X i&E 

3. The space £«, and its conjugate space. Let 91 be a proper sub
family of 9TC such that 91 is closed under the formation of countable 

file:///x-null
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unions and every 9TC-measurable subset of an element of 91 is an ele
ment of 91. For each ƒ G M, set 

||/||oo = i n f { a G ^ : { ^ G X : | / ( ^ ) | > a} G 9 l } , 

and let M0 = {fEM: ||/||oo< + °° } • We say that two functions ƒ and g 
in Mo are equivalent if ||/—g||oo:=0, and we let Lw denote the usual 
Banach space of equivalence classes in Mo with norm || - l|oo-

Given 91, let 70 = {iEI:AiE*9l}. Clearly, if £ £ 9 1 , IBCIQ. For 
each ƒ G -Mo, let T0(f) be that element of E such that T0(f) (i) = *f(cP(i)) 
for i^I—Io and r 0 ( f ) ( i )=0 for iEIo- Given ƒ and g in M0, 
T0(f) 9* r 0 (g) => ||/ - g||M = 0 => r„( / ) = r0(g). Moreover, | l / | | ^ 
max4-Gi| T0(f)(i) | . We may, therefore, consider T0 to be a mapping of 
Loo into E; this mapping preserves addition and multiplication by 
standard real numbers. 

For each functional F in the dual space ! « of L^, let V(F) be the 
element of E such that for all iGZ, V(F)(i) = *F(xAi), and let /XF 
= 0(7(70)- I t is easy to see that U(JJLF) = 7(70- Yosida and Hewitt's 
representation of Lw ( [6, p. 53 ]) now has the following form : 

THEOREM 5. Let $ 0 be the normed vector space {fiE&'V>(B) = 0 , 
Vi?G9l} with norm given by ||/x|| = | fx\ (X). For each FELt, let 
©(P) =fJt,F' Then @ is an isometric isomorphism from the Banach space 
Loo onto&o, and for each FEL«> andfEL^ we have 

Hf) = f fd»p~V(F)>To(f). 
J x 

COROLLARY. A nonzero functional FEL* is multiplicative iff 
UQJLF) = àjfor somejEl—Io> 

Assume now that there is a nonnegative JJLE&C such that 91 
= {£G9ï l : /x (£ )=0} . If/G-Zoo and ^ G â c h a s the value *> (£)==ƒ* ƒ 4* 
for each SeSfTC, then for each iEI-h, *f(cP(i))cx*v(Ai)/*ii(Ai). To 
apply this result to probability theory, assume that /x(X) = 1 and 
choose a cr-algebra 9TCiC9TC. There is a *finite, *9Tli-measurable par
tition P i of *,X"such that P i is finer than any standard, finite 9TCi-
measurable partition of X and such that for each CGPi , C 
= U{AiEP:AiCC}. If YE MB and E ( F , 9TCi) is the conditional 
expectation of F with respect to 9TCi, then for each CGPi with IA(C)T*0 
and for each x £ C , 

*E(Y, 9TC0C*) =* [ Z *Y(cp(A)Wi)\/WC). 
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