A NONSTANDARD REPRESENTATION OF MEASURABLE SPACES AND L_{∞}

BY PETER A. LOEB¹

Communicated by Paul Cohen, November 9, 1970

The results given in this note were obtained by applying to measure theory the methods of nonstandard analysis developed by Abraham Robinson [5]. Amplifications of these results with proofs will be published elsewhere.² It is shown here that there are linear mappings from an arbitrary, real L_{∞} space and its dual L_{∞}^* into Euclidean ω -space E^{ω} , where ω is an infinite integer. Finite valued, finitely additive measures on the underlying measurable space are also mapped onto elements of E^{ω} , and integrals are infinitesimally close to the corresponding inner products in E^{ω} . Yosida and Hewitt's representation of L_{∞}^* [6] is an immediate consequence of these results.

In general, we use Robinson's notation [5]. If we have an enlargement of a structure that contains the set R of real numbers, then *Rdenotes the set of nonstandard real numbers and *N, the set of nonstandard natural numbers. A set S is called *finite if there is an internal bijection from an initial segment of *N onto S; a *finite set has all of the "formal" properties of a finite set. Given b and c in *R, we write $b \simeq c$ if b - c is in the monad of 0; when b is finite, we write °bfor the unique, standard real number in the monad of b.

1. The partition P and bounded measurable functions. Let X be an infinite set and \mathfrak{M} an infinite σ -algebra of subsets of X. Fix an enlargement of a structure that contains X, \mathfrak{M} , and the extended real numbers. There is a *finite, * \mathfrak{M} -measurable partition P of *X such that P is finer than any finite \mathfrak{M} -measurable partition of X. That is, $P \subset \mathfrak{M}$ has the following properties:

(i) There is an infinite integer $\omega_P \in N$ and an internal bijection from $I = \{i \in N: 1 \leq i \leq \omega_P\}$ onto P. Thus we may write $P = \{A_i: i \in I\}$.

(ii) If *i* and *j* are in *I* and $i \neq j$, then $A_i \neq \emptyset$ and $A_i \cap A_j = \emptyset$.

AMS 1970 subject classifications. Primary 26A98, 28A60; Secondary 28A20, 28A25.

Key words and phrases. Measurable spaces, *finite partition, Euclidean ω -space, finitely additive measures, purely finitely additive measures, representation of L^*_{∞} , conditional expectation.

¹ This work was supported by N.S.F. Grant NSF GP 14785.

² These results were announced at the 1970 Oberwolfach conference on nonstandard analysis.

Copyright © 1971, American Mathematical Society

(iii) $*X = \bigcup_{i \in I} A_i$.

(iv) For each $B \in \mathfrak{M}$, let $I_B = \{i \in I : A_i \subset B\}$. Then I_B is *finite, and $B = \bigcup_{i \in I_B} A_i$.

(v) Let M be the set of \mathfrak{M} -measurable functions on X, and MB, the set of bounded functions in M. For each $f \in MB$ and $i \in I$, $\sup_{x \in A_i} *f(x) - \inf_{x \in A_i} *f(x) \simeq 0$.

Given the partition P, we let E denote the set of all internal mappings from I into *R. The set E has all of the "formal" properties of Euclidean *n*-space. We shall write x_i instead of x(i) for $x \in E$ and $i \in I$, and we shall write $x \cong y$ if $x, y \in E$ and $x_i \cong y_i, \forall i \in I$. Let c_P denote a fixed internal choice function defined on I with $c_P(i) \in A_i$ $\in P$ for each $i \in I$. Let T denote the mapping from MB into E defined by setting $T(f)(i) = *f(c_P(i))$ for each $f \in MB$ and $i \in I$.

PROPOSITION 1. Given f, g in MB and α , β in R, $T(\alpha f + \beta g) = \alpha T(f) + \beta T(g)$ and $T(f) \not\cong T(g)$ if $f \neq g$.

2. Measures and integration. Let $\Phi(X, \mathfrak{M})$, or simply Φ , denote the set of all finitely additive real-valued functions μ on \mathfrak{M} such that $\sup_{B \in \mathfrak{M}} |\mu(B)| < +\infty$. Let U be the mapping of Φ into E defined by setting $U(\mu)(i) = *\mu(A_i)$ for each $\mu \in \Phi$ and $i \in I$. Clearly, U preserves addition and multiplication by real numbers. Conversely, if $e \in E$ and both $\sum_{i \in I} (e_i \lor 0)$ and $\sum_{i \in I} (-e_i \lor 0)$ are finite in *R, let $\varphi(e)$ be that element of Φ such that for each $B \in \mathfrak{M}$, $\varphi(e)(B) = \circ \sum_{i \in I_B} e_i$. (Note that we are writing \sum instead of $*\sum$ for the extension of the summation operator.) For each $\mu \in \Phi$, $\varphi(U(\mu)) = \mu$, but in general, $U(\varphi(e)) \ncong e$. If μ and ν are in Φ , then $U(\mu) \land U(\nu) \cong U(\mu \land \nu)$, and $\circ \sum_{i \in I} |U(\mu)(i)| = |\mu|(X)$.

Let Φ_c and Φ_p be, respectively, the set of countably additive and the set of purely finitely additive elements of Φ . Yosida and Hewitt's Theorem 1.19 [6] has the following extension:

THEOREM 1. There is a set $K \in \mathfrak{M}$ such that for all $\mu \in \Phi_c$, $|\ast \mu|(K) \simeq 0$ and for all $\nu \in \Phi_p$, $|\ast \nu|(\ast X - K) = 0$.

Without loss of generality, we assume that $K = \bigcup \{A_i \in P : A_i \subset K\}$. If $\mu = \mu_c + \mu_p$ is the decomposition of an element μ in $\Phi = \Phi_c \oplus \Phi_p$, then when $A_i \subset X - K$, $U(\mu)(i) = U(\mu_c)(i)$ and when $A_i \subset K$, $U(\mu)(i)$ $\simeq U(\mu_p)(i)$. We next show that there is a "maximum" null set for each $\mu \in \Phi^+$, and we extend the Hahn decomposition theorem for countably additive signed measures.

THEOREM 2. Let μ be an arbitrary, finitely additive signed measure on (X, \mathfrak{M}) . Let

$$A_{+} = \bigcup \{ A_{i} \in P : *\mu(A_{i}) > 0 \}, \quad A_{-} = \bigcup \{ A_{i} \in P : *\mu(A_{i}) < 0 \},$$

and

$$A_0 = \bigcup \{A_i \in P : *\mu(A_i) = 0\}.$$

Then $*\mu(A_0) = 0$, and for each μ -null set $B \in \mathfrak{M}$, $*B \subset A_0$. If there exists a μ -positive set B_+ and a μ -negative set B_- in \mathfrak{M} with $X = B_+ \cup B_-$ and $B_+ \cap B_- = \emptyset$, then $A_+ \subset *B_+$, $A_- \subset *B_-$, and each $A_i \in P$ is either a $*\mu$ -positive set or a $*\mu$ -negative set.

If we apply Theorem 2 to Lebesgue measure on the real line, we see that every standard real number is in the null set A_0 .

Let $\Phi_1 = \{ \mu \in \Phi : \mu(X) = 1 \text{ and } \forall B \in \mathfrak{M}, \ \mu(B) = 0 \text{ or } \mu(B) = 1 \}$. For each $j \in I$, let $\delta^j \in E$ be defined by setting $\delta^j_i = 0$ if $i \neq j$ and $\delta^j_j = 1$.

THEOREM 3. For each $j \in I$, $\varphi(\delta^j) \in \Phi_1$, and for each $\mu \in \Phi_1$, $U(\mu) = \delta^j$ for some $j \in I$. Moreover, if $\{x\} \in \mathfrak{M}$ for each standard point $x \in X$, then the following are equivalent statements:

(i) Given $j \in I$, $\varphi(\delta^j) \in \Phi_p$ iff $A_j \neq \{x\}$ for any standard point $x \in X$.

(ii) Every free \mathfrak{M} -measurable ultrafilter $\mathfrak{F} \subset \mathfrak{M}$ contains a chain $B_1 \supset B_2 \supset \cdots$, with $\bigcap_{n=1}^{\infty} B_n = \emptyset$.

If μ is a nonnegative finitely additive measure on (X, \mathfrak{M}) and $f \ge 0$ is μ -integrable on X, then for each $B \in \mathfrak{M}$,

$$\int_{B} f \, d\mu \simeq \sum_{i \in I_{B}} \left(\inf_{x \in A_{i}} *f(x) \right) * \mu(A_{i}).$$

We can relate integration on X to the inner product " \cdot " in E as follows:

THEOREM 4. If $f \in MB$ and $\mu \in \Phi$, then for each $B \in \mathfrak{M}$,

$$\int_B f d\mu = \sum_{i \in I_B} f(c_P(i)) * \mu(A_i).$$

In particular, $\int_X f d\mu \simeq T(f) \cdot U(\mu)$.

In general, Theorem 4 is false for unbounded functions $f \in M$. One can, however, find for each $f \in M$ an $\omega \in N$ such that if $*f_{\omega} = -\omega \vee f \wedge \omega$, then for each $i \in I$, $\sup_{x \in A_i} *f_{\omega}(x) - \inf_{x \in A_i} *f_{\omega}(x) \simeq 0$. If $\mu \in \Phi$ and f is μ -integrable, then

$$\int_{X} f d\mu \simeq \sum_{i \in E} {}^{*}f_{\omega}(c_{P}(i))^{*}\mu(A_{i}).$$

3. The space L_{∞} and its conjugate space. Let \mathfrak{N} be a proper subfamily of \mathfrak{M} such that \mathfrak{N} is closed under the formation of countable

542

unions and every \mathfrak{M} -measurable subset of an element of \mathfrak{N} is an element of \mathfrak{N} . For each $f \in M$, set

$$||f||_{\infty} = \inf\{\alpha \in R : \{x \in X : |f(x)| > \alpha\} \in \mathfrak{N}\},\$$

and let $M_0 = \{f \in M : ||f||_{\infty} < +\infty\}$. We say that two functions f and g in M_0 are equivalent if $||f-g||_{\infty} = 0$, and we let L_{∞} denote the usual Banach space of equivalence classes in M_0 with norm $|| \cdot ||_{\infty}$.

Given \mathfrak{N} , let $I_0 = \{i \in I: A_i \in \mathfrak{N}\}$. Clearly, if $B \in \mathfrak{N}$, $I_B \subset I_0$. For each $f \in M_0$, let $T_0(f)$ be that element of E such that $T_0(f)(i) = *f(c_P(i))$ for $i \in I - I_0$ and $T_0(f)(i) = 0$ for $i \in I_0$. Given f and g in M_0 , $T_0(f) \cong T_0(g) \Rightarrow ||f - g||_{\infty} = 0 \Rightarrow T_0(f) = T_0(g)$. Moreover, $||f||_{\infty} \simeq \max_{i \in I} |T_0(f)(i)|$. We may, therefore, consider T_0 to be a mapping of L_{∞} into E; this mapping preserves addition and multiplication by standard real numbers.

For each functional F in the dual space L_{∞}^{*} of L_{∞} , let V(F) be the element of E such that for all $i \in I$, $V(F)(i) = *F(\chi_{A_i})$, and let $\mu_F = \phi(V(F))$. It is easy to see that $U(\mu_F) = V(F)$. Yosida and Hewitt's representation of $L_{\infty}^{*}([6, p. 53])$ now has the following form:

THEOREM 5. Let Φ_0 be the normed vector space $\{\mu \in \Phi : \mu(B) = 0, \forall B \in \mathfrak{N}\}$ with norm given by $\|\mu\| = |\mu|(X)$. For each $F \in L_{\infty}^*$, let $\Theta(F) = \mu_F$. Then Θ is an isometric isomorphism from the Banach space L_{∞}^* onto Φ_0 , and for each $F \in L_{\infty}^*$ and $f \in L_{\infty}$ we have

$$F(f) = \int_X f \, d\mu_F \simeq V(F) \cdot T_0(f).$$

COROLLARY. A nonzero functional $F \in L_{\infty}^*$ is multiplicative iff $U(\mu_F) = \delta^j$ for some $j \in I - I_0$.

Assume now that there is a nonnegative $\mu \in \Phi_c$ such that $\mathfrak{N} = \{B \in \mathfrak{M}: \mu(B) = 0\}$. If $f \in L_{\infty}$ and $\nu \in \Phi_c$ has the value $\nu(B) = \int_B f d\mu$ for each $B \in \mathfrak{M}$, then for each $i \in I - I_0$, $*f(c_P(i)) \simeq *\nu(A_1) / *\mu(A_i)$. To apply this result to probability theory, assume that $\mu(X) = 1$ and choose a σ -algebra $\mathfrak{M}_1 \subset \mathfrak{M}$. There is a *finite, $*\mathfrak{M}_1$ -measurable partition P_1 of *X such that P_1 is finer than any standard, finite \mathfrak{M}_1 -measurable partition of X and such that for each $C \in P_1$, $C = \bigcup \{A_i \in P: A_i \subset C\}$. If $Y \in MB$ and $E(Y, \mathfrak{M}_1)$ is the conditional expectation of Y with respect to \mathfrak{M}_1 , then for each $C \in P_1$ with $\mu(C) \neq 0$ and for each $x \in C$,

*
$$E(Y, \mathfrak{M}_1)(x) \simeq \left[\sum_{A_i \in P; A_i \subset G} *Y(c_P(i))*\mu(A_i)\right]/*\mu(C).$$

1971]

P. A. LOEB

References

1. E. Berkson and H. Porta, Representations of $\mathfrak{B}(X)$, J. Functional Analysis 3 (1969), 1-34. MR 38 #3728.

2. N. Dunford and J. T. Schwartz, *Linear operators*. I: *General theory*, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.

3. W. A. J. Luxemburg (Editor), Applications of model theory to algebra, analysis, and probability, Holt, Rinehart and Winston, New York, 1969. MR 38 #3143.

4. M. Machover and J. Hirschfeld, *Lectures on nonstandard analysis*, Lecture Notes in Math., no. 94, Springer-Verlag, Berlin and New York, 1969. MR 40 #2531.

5. A. Robinson, Non-standard analysis, North-Holland, Amsterdam, 1966. MR 34 #5680.

6. K. Yosida and E. Hewitt, *Finitely additive measures*, Trans. Amer. Math. Soc. 72 (1952), 46-66. MR 13, 543.

UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801