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The results given in this note were obtained by applying to measure
theory the methods of nonstandard analysis developed by Abraham
Robinson [5]. Amplifications of these results with proofs will be
published elsewhere.? It is shown here that there are linear mappings
from an arbitrary, real L, space and its dual L% into Euclidean
w-space E®, where w is an infinite integer. Finite valued, finitely
additive measures on the underlying measurable space are also
mapped onto elements of E¢, and integrals are infinitesimally close
to the corresponding inner products in E®. Yosida and Hewitt's
representation of L% [6] is an immediate consequence of these results.

In general, we use Robinson’s notation [5]. If we have an enlarge-
ment of a structure that contains the set R of real numbers, then *R
denotes the set of nonstandard real numbers and *N, the set of non-
standard natural numbers. A set S is called *finite if there is an
internal bijection from an initial segment of * N onto .S; a *finite set
has all of the “formal” properties of a finite set. Given b and ¢ in *R,
we write b~ if b —c is in the monad of 0; when b is finite, we write °b
for the unique, standard real number in the monad of b.

1. The partition P and bounded measurable functions. Let X be an
infinite set and 9 an infinite o-algebra of subsets of X. Fix an en-
largement of a structure that contains X, 9%, and the extended real
numbers. There is a *finite, *9M-measurable partition P of *X such
that P is finer than any finite 9M-measurable partition of X. That is,
PC*IM has the following properties:

(i) There is an infinite integer wp&*N and an internal bijection
from I = {i € *N:1 Z¢ = wp} onto P. Thus we may write
P={A;:iEI}.

(ii) If and jare in I and 75§, then 4;# & and 4;N\A;= .
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(iii) *X =U;er 4.

(iv) For each BEIM, let Ip={i€I:4;C*B}. Then I is *finite,
and *B =Ui€IB A;.

(v) Let M be the set of 9M-measurable functions on X, and MB,
the set of bounded functions in M. For each f&EMB and 1E€1,
supsca; *f(x) —inf.ea, *f(x)=0.

Given the partition P, we let E denote the set of all internal map-
pings from I into *R. The set E has all of the “formal” properties of
Euclidean n-space. We shall write x; instead of x(¢) for x&€E and
1€ 1, and we shall write x=2y if x, yEE and x,>2y;, ViEI. Let ¢p
denote a fixed internal choice function defined on I with cp(:)EA;
&P for each 1&1. Let T denote the mapping from MB into E de-
fined by setting T'(f) (z) = *f(cp(¢)) for each fE M B and 1E 1.

ProrosiTION 1. Given f, g in MB and o, B in R, T(of +Bg) =aT'(f)
+BT(g) and T(N)ET(g) if f#¢.

2. Measures and integration. Let ®(X, o), or simply ®, denote the
set of all finitely additive real-valued functions u on 9 such that
supsem [u(B)| <+ . Let U be the mapping of ® into E defined by
setting U(u) () = *u(4;) for each u&E® and 7& 1. Clearly, U preserves
addition and multiplication by real numbers. Conversely, if e€EE
and both D _ser (es\/0) and D er (—e:\/0) are finite in *R, let ¢(e) be
that element of & such that for each BEM, o(e)(B) =° 2 :cry €i.
(Note that we are writing », instead of * >, for the extension of the
summation operator.) For each u&®, o(U(u)) =u, but in general,
Ulp(e))z£e. If u and v are in ®, then UW)N\U@E)=U(u/\»), and
°ier | U @)| =] u| (X).

Let ®, and ®, be, respectively, the set of countably additive and the
set of purely finitely additive elements of ®. Yosida and Hewitt’s
Theorem 1.19 [6] has the following extension:

THEOREM 1. There is a set K S*IN such that for all u€®., | *u| (K)
~0 and for ally &P, | *y| (*X —K) =0.

Without loss of generality, we assume that K =U {A.—EP 1A;,CK } .
If p=pc+p, is the decomposition of an element u in & =&, H®,, then
when A4;C*X —K, Uu)(@) =U(u.)(z) and when A;CK, U(u)(@)
~U(up)(¢). We next show that there is a “maximum” null set for each
uwED*, and we extend the Hahn decomposition theorem for countably
additive signed measures.

THEOREM 2. Let p be an arbitrary, finitely additive signed measure on
(X, ). Let



542 P. A. LOEB [July

4y = U{d: € Prru(4) >0}, 4_=U{4; € P:*u(4,) <0},

and

4y = U{4; € P:*u(4y) = 0}.
Then *u(Ao) =0, and for each u-null set BEM, *BC A,. If there exists a
u-positive set By and a p-negative set B_ in M with X =B,\UB_ and
B,NB_=, then A C*B,, A_C*B_, and each A;EP is either a
*u-positive set or a *u-negative set.

If we apply Theorem 2 to Lebesgue measure on the real line, we see
that every standard real number is in the null set 4.

Let &, = {p.E@:u(X) =1 and VBEIW, u(B) =0 or u(B) = 1}. For
each jE€ 1, let 8'CE be defined by setting 8/ =0 if 45¢j and & =1.

THEOREM 3. For each jEI, ¢(89) EPy, and for each p&EP,, U(u) =867
for some j&I. Moreover, if {x} E I for each standard point xEX, then
the following are equivalent statements:

(i) Given jEI, p(37)E®, iff A;5 {x} for any standard point xEX.

(i) Every free OM-measurable ulirafiller FCOM contains a chain
313B23 ct ey, with n:;l B,,=,®.

If p is a nonnegative finitely additive measure on (X, 9) and f=0
is u-integrable on X, then for each BE I,

[ sau= p) (it 7)) 0.

z€4;

We can relate integration on X to the inner product “-” in E as
follows:

THEOREM 4. If fE M B and u&E®, then for each BE I,

J 70 ="% sertirucan.

€l
In particular, [x f du==T(f)- U(u).

In general, Theorem 4 is false for unbounded functions f& M. One
can, however, find for each f& M an w&*N such that if *f, = —wV*f
Aw, then for each 1& 1, supzca; *fo(x) —infoea; *fo(x)~0. If &P and
fis p-integrable, then

[ =2 30 ¥ u(cr())*u(42).
X 1€EE

3. The space L, and its conjugate space. Let 9 be a proper sub-

family of 9 such that M is closed under the formation of countable
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unions and every 9-measurable subset of an element of 9 is an ele-
ment of . For each f&E M, set

[flle = inffa € R:{e € X: | f@) | > o} €x},

and let Mo= {f& M:||f||.<+ = }. We say that two functions f and g
in M, are equivalent if ||f—g||.=0, and we let L., denote the usual
Banach space of equivalence classes in M, with norm || -| .

Given %, let Io,= {iCI:4;€*n}. Clearly, if BER, I3CI,. For
each f& M, let To(f) be that element of E such that T'o(f) (¢) = *f(cr(3))
for i&I—1I, and To(f)(s) =0 for 1&Io. Given f and g in M,,
To(f) = To(g) = |If — glle = 0= Tu(f) = To(g). Moreover, ||f]la
maxierl To(f)(2) [ . We may, therefore, consider Ty to be a mapping of
L, into E; this mapping preserves addition and multiplication by
standard real numbers.

For each functional F in the dual space L% of Ly, let V(F) be the
element of E such that for all &1, V(F)(z) =*F(x4,), and let pr
=¢(V(F)). It is easy to see that U(ur) = V(F). Yosida and Hewitt’s
representation of L% ([6, p. 53]) now has the following form:

THEOREM 5. Let ®y be the normed vector space {uC®:u(B)=0,
VBER} with norm given by ||u||=|u|(X). For each FELZ, let
O(F) =urp. Then O is an isometric isomorphism from the Banach space
LY onto ®,, and for each FELY and fE L., we have

F(f) = fX f dur = V(B)-To(f).

COROLLARY. A monzero functional FELY is multiplicative iff
U(ur) =07for somejcI—I,.

Assume now that there is a nonnegative u&®, such that i
= {BEm:pu(B)=0}. If fEL,, and vEd, has the value »(B) = [ f du
for each BEIM, then for each 1&1—1I,, *f(cp(2))2*v(A41) /*u(4,). To
apply this result to probability theory, assume that u(X)=1 and
choose a g-algebra M CIMN. There is a *finite, *IM;-measurable par-
tition P; of *X such that P; is finer than any standard, finite 9;-
measurable partition of X and such that for each C&P, C
=U{A,~EP:A,~CC}. If YEMB and E(Y, M,) is the conditional
expectation of ¥ with respect to 9, then for each C&E P, with u(C)#0
and for each x&C,

*E(I’,i’fh)(x)z[ 2 *V(CP(i))*u(Ae):I/*M(C)-

4i€pidicc
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