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SOME NONLINEAR STOCHASTIC GROWTH MODELS 

BY H A R R Y K E S T E N 

ABSTRACT. Stochastic growth models which generalize Galton-
Watson branching processes are discussed. The models have an in­
terpretation in population dynamics and economics. The indi­
viduals or particles do interact, e.g. if the individuals represent 
members of a population, allowance is made for sexual reproduc­
tion, so that pairs of individuals are needed to produce offspring. 
The typical form of the results is that with probability one, either 
the population remains bounded in size, or it grows at an exponen­
tial rate and its composition converges to a fixed point of a suitable 
transformation. 

1. Introduction. The problem to which we want to address ourselves 
is "What is the rate of the population explosion?" In order to deal 
with this problem mathematically one needs a more or less explicit 
model for population growth, and we shall consider some probabilistic 
ones. Stochastic models describing the growth and/or extinction of 
various populations abound and we only list some of the (histori­
cally) more important references and some books or survey articles 
in which the reader can find further references : Fisher (1930) (Chapter 
IV has one of the earliest biological applications of branching pro­
cesses), Feller (1939) (first mathematical treatment of fairly general 
birth and death processes), Feller (1950) (cf. especially his comments 
in §§1, 6 and 7 on the difficulty of treating size and composition of a 
population with several interacting types), Bartlett (1949) (use of 
generating functions to handle birth and death processes), Bartlett 
(1960), Kendall (1949) (cf. especially §2(ix), where the problem of 
two sexes is discussed), Goodman (1953) and (1968) (considers two 
sexes with age specific birth and death rates, but has no interactions 
between the sexes in his stochastic models), Bailey (1957) (models 
for epidemics), Bharucha-Reid (1960) (Chapter 4 summarizes 
several models and gives many references), Moran (1962) (especially 
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Chapters 1, 5 and 9), Daley (1968) (extinction probabilities for 
simple stochastic models with two interacting sexes); Harris (1963) 
and Athreya and Ney (1971) give a rather complete survey of the 
theory and applications of branching processes, and finally, Smith 
and Wilkinson (1969) and Athreya and Karlin (1970) and (1971) 
have treated "branching processes with random environments" (in 
the latter situations individuals do not behave completely inde­
pendently of each other anymore). 

As far as we can determine the novelty of the considerations below 
lies in the fact that they allow for several types and two sexes which 
interact and that they keep track of the size and composition of the 
population simultaneously. The models are stochastic, but it will 
turn out that by and large the effect of the random fluctuations is in 
the initial stages of development. Once the population gets large it 
will start to grow exponentially, essentially in a deterministic 
fashion. However, one interesting distinction between the deter­
ministic and stochastic version is discussed at the end of §3. I t is a 
serious gap in our results that they only predict either extinction or 
exponential growth of the population. It would be more interesting 
to find results about the behavior of a population before extinction 
in a model in which the extinction time is very large with high prob­
ability (cf. the comments in Bartlett (1960) pp. 24 and 32 on "quasi-
stationarity"). For the time being we put this last problem aside as 
being too difficult. Before describing the models we point out that 
they also have interpretations in other than population genetical 
terms. E.g., Stigum (1971) and Kesten and Stigum (1972) give an 
application to economics (see also Example (iv) in §2). 

2. Description of model and examples. To provide a suitable 
background for discussion we recapitulate the properties of one of 
the simplest stochastic growth models, to wit, the Galton-Watson 
branching process (see Harris (1963) or Athreya and Ney (1971) for 
details and applications). One considers a population with non-
overlapping generations, containing individuals of d types. Zn(i) 
denotes the number of individuals of type i (i-individuals) in the nth 
generation. I t is assumed that the (n+l)st generation is formed from 
the nth generation in the following way: Each individual produces 
offspring according to a fixed distribution which depends only on the 
type of the individual. After that the individual dies and is not 
counted in the next generation. All individuals produce offspring 
independently of each other and independent of the past history of 
the process. This independence assumption is the most crucial one 
of this model. Let 
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(2.1) mij = E{# of j-children produced by an i-individual} 

and 

(2.2) M = (nnl3)isu«i. 

I t is easy to write down the conditional expectation of Zn+i(i), given 
Zo(-)> • • • , Zn(-). Indeed, there are Zn(j) individuals of type j in the 
nth generation, each of which has an expected contribution of ntjj to 
Zn+i(i). Thus, the expected number of i-individuals in the (w + l)st 
generation from j-parents is Zn(j)mjtiy and summing overj one finds 

d 

(2.3) E{Zn+1{i) | Z0, • • • , Z„} = £ Zn(j)mLi. 

In matrix notation, with Z' denoting the row vector (Z(l), • • • , 
Z(d))y the transpose of Z, (2.3), reads 

(2.4) E{ZUi\Zo, • • -,Zn) =Z:M. 

Iteration of (2.4) gives 

(2.5) E{Z^.k | Zo, • • • , Zn\ = ZJ[M\ 

In order to guess limit theorems for this model we first replace 
(2.5) by its deterministic analogue 

(2.6) Zi = ZiMK 

If one makes the simplifying assumption 

(2.7) d < oo, 0 < ntij < oo, for all i,j, 

then it is easy to find the asymptotic behavior of Z* from (2.6). The 
Perron-Frobenius theorem (Karlin (1966), Appendix) tells us that, 
under condition (2.7), M has a largest positive eigenvalue p with 
corresponding right and left eigenvectors u and v which are strictly 
positive, i.e., 

(2.8) Mu = pu, v'M = pv', «(f) > 0, v(i) > 0, 1 g i ^ d. 

Moreover, if u and v are normalized such that u'v = 1, then 

I Af»(i, j) 
(2.9) - u(i)v(j) g Kik" 

P" 

for some K\< oo and O g \ < l (see proof of Theorem 2.3 in the Ap­
pendix of Karlin (1966)). When applied to (2.6) this theorem shows 
that Zn grows exponentially at ra tep; more precisely1 

1 \z\ stands for 23?-i|Z(*)| if Z is a ó-vector. 
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^ Kx\ZQ\\n. 

Under mild moment assumptions (and exclusion of a singular case 
when p = 1) this result has the following analogue for the stochastic 
Galton-Watson process (see Kesten and Stigum (1966) or Harris 
(1963), Chapter I I ) : 

(2.11) I f p ^ l , then Z„ = 0 eventually. 

, v If p > l , then limn-* (Zn/p
n) =wv a.e. for some random vari­

able w which satisfies 

(2.13) q = P{w = 0} = P{Zn = 0 eventually} < 1. 

(p and v are as in (2.8).) Note that (2.11)-(2.13) imply that, with 
probability one, Zn either vanishes eventually or grows exponentially 
at a rate greater than one. If p ^ 1, extinction is certain. For p < 1 we 
could have expected this on the basis of the deterministic model, since 

(2.14) E{Zi | Zo} - Z£Mn = 0(pn) - > 0 (n-> «>, p < 1) 

and \Zn\ can only become very small when Zn vanishes. This last 
statement is not true in more general cases where Zn does not neces­
sarily have positive integer-valued components. In such cases the 
alternatives will be: Either \Zn\ remains bounded or Zn grows ex­
ponentially at a rate greater than one (see for instance Stigum (1971)). 
Another important remark concerns the asymptotic direction of Zn. 
I t follows from (2.12) and (2.13), that in the case where exponential 
growth occurs, and this has probability (1— q)>0 when p > l , the 
limiting direction of p~nZn is nonrandom, but equal to the fixed 
direction of v. Only the asymptotic size of p~nZn is random. 

We may consider the problem of the asymptotic behavior of Zn in a 
Galton-Watson process as settled by (2.11)—(2.13). The rea­
son for these simple and precise results lies in the fact that 
E{Z'n+1\Z0, • • • , Zn} is a linear function of Zn (see (2.4)). This linear 
relationship is, in turn, a reflection of the assumption that indi­
viduals reproduce independently of each other. Each individual 
produces children by itself without cooperation from other indi­
viduals. As is well known from the story of the birds and bees this is 
not the case in many biological populations. A pair of individuals of 
opposite sex is needed to produce offspring. We try to take this into 
account in the following model for zygotic selection, which is a 
stochastic version of one of the most basic models in population 
genetics. We shall refer to this as the Fisher-Wright-Haldane model. 

(2.10) 
ZnU) (Zlu)v(j) 
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See Mulholland and Smith (1959), Karlin (1962/63), Moran (1962), 
pp. 50-55, Blakley (1964) and Blakley and Dixon (1964) for a treat­
ment of the deterministic version. Note that this literature only dis­
cusses a very special choice of the coefficients ƒ( • | •, • ) and we shall 
later also make the same restrictions (see (3.24) and (3.25)). In this 
model individuals are still not distinguished by sex, but it requires a 
pair of individuals to produce offspring. More complicated models 
which do incorporate sex distinctions can be formulated along the 
same lines (see Kesten (1970)). Despite the fact that sex is not dis­
tinguished it is mathematically more convenient to think of couples 
as ordered pairs. We speak of a (j, k)-couple if the first partner is of 
type j and the second partner of type k. Again we consider only a case 
of nonoverlapping generations without age effects. As before Zn(i) is 
the number of i-individuals in the nth generation and we now also 
introduce 

d 

(2.15) | Zn | = ]T) Zn(i) — total size of nth generation 

and 

Zn(i) 
(2.16) zn{i) = -j r = proportion of i-individuals in nth generation. 

In the Fisher-Wright-Haldane model the {n + l)st generation is 
formed from the nth generation in two steps. First the individuals are 
divided at random into [| Zn\ /2 ] couples (one individual is left over if 
| Zn\ is odd), i.e., all possible pairings are taken equally likely. Simple 
properties of random orderings or drawing without replacement (see 
Feller (1968), §V. 2(c) with c = - 1 , d = 0 and Exercise V. 8.20) show 
that the probability of a given couple being of type (j, k) equals 

Y~ Zn(j)Zn(k) + 0. 

The second step consists of the production of offspring after the 
couples have been formed. This time we assume that all couples 
produce offspring independently of each other, and that the distri­

c t ^) — 8j,k 
(2.17) zn(j) 

\Z»\ - 1 

Consequently, for \Zn\ ^ 2 and some \d\ g 1, 

£{# of (j, k)-couples | Z0, • • • , Zn} 

(2.18) r | Zn | 1 Zn(k) - tij, 

= h r r 0 ) iz.i-1 
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bution of offspring depends only on the type of the couple. Instead of 
(2.1) we now introduce 

(2.19) f(i | j , k) = E{# of i-children produced by a (j, k)-couple}. 

Arguments analogous to the ones used to derive (2.3) now lead from 
(2.18) to 

E\Zn+i{i) I Z0, • • • , Zn\ 

(2.20) \Zn\ — . 

2 j,k 

whereK2= *Eij,kf(i\j,k)t \di\ £ 1 . 
To compare (2.20) with the formula (2.3) for the Galton-Watson 

process, and also to come to a more general formulation, we introduce 
the set of d-dimensional probability vectors 

(2.21) A = L = (*(1), • • • , x(d)):x(i) è 0, £ x(i) = l l , 

and the following two transformations from A into A : 

d 

(2.22) Tix(i) = — , 

d 

d 

X) oo{j)x(k)f{i I y, i ) 
(2.23) T2x(i) = ''*"* 

(2.3) and (2.20) can then be rewritten as 

(2.24) E izn+i | Zo, • • • , zX = j | Zn | E *»0>i.i} 7 A , 

respectively 

E\Zn+i I Z0, • • • , Zn\ 

(2.25) ( I z J _ . ) 
= Y-~ Z *n(j)zn(k)f(i|i, *)^ r2*w + e2Yn, 

for some | 02| ^ 1 and a vector F» with | Yn\ SdK2. This suggests that 
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we consider positive d-vector-valued processes {Zn}nào for which the 
conditional distribution of Z»+i, given Z0, • • • , Zn, is "centered 
around" 

(2.26) r(Zn(-))Tzn 

for a nice function r : (R+)d-*R+
 2 and a nice transformation T:A-~>A. 

In the Galton-Watson process we see from (2.24) that we should take 

(2.27) T ( Z » ( - ) ) = | 2 « | £ * 0 > y . i and T = Tu 
3,1 

whereas in the Fisher-Wright-Haldane model 

\Z I 
(2.28) r{Zn{-)) = - 4 P - E zn(j)zn(k)f(l \ j , k) and T = T2 

2 j,k,l 

is the choice prescribed by (2.25). 
In the situation described at the end of the last paragraph we look 

for conditions on r, T and the probability mechanism which allow us 
to conclude that, for some p > 1, p~nZn converges with positive prob­
ability. Firstly, notice that (2.26) is a sort of polar form; the direction 
of this vector is that of Tzni whereas 

(2.29) \r(Zn(-))Tzn\ = r(Zn(-)). 

Thus, if we want to avoid zero or infinite growth rates, i.e., if we want 
|Z n + i | to be of the same order as \Zn\$ then it seems reasonable to 
require 

(2.30) Kz ^ ~ y ^Kh O^ZG (R+)d, 

for some 0<Kz^Kt< oo. (2.30) holds for (2.27) under the condition 
(2.7), respectively for (2.28) under mild positivity conditions on 
ƒ ( • | •, • ). Secondly we want to make precise the condition that Zn+\ be 
"centered around" (2.26). In the Galton-Watson model and the 
Fisher-Wright-Haldane model we can do this with the help of 
Chebychev's inequality if we assume that the number of children of 
each individual, respectively couple, has finite variance. Simple esti­
mates of the conditional variance 

E{ I Zn+i — E(Zn+i | Zo, • • • , Zn) |21 Zo, • • • , Zn) 

show that in these cases 

»Rf=[0, oo). 
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(2,31) P{ | Zn+1 - r(Zn(-))Tzn \ ^ a\ Zn J1"251 Z0, • • • , Zn} S Kba~> 

for some K$< oo, a }£0, \Zn\ > 0 and S = \. In the more general case we 
shall therefore assume that (2.31) holds for some 0 < S ^ § , \Zn\ > 0 
anda l lO^o^ iTe lZ^I 2 5 . 

Before we analyze where these assumptions lead us, we want to 
mention some further examples which fit in the above framework and 
satisfy (2.30) and (2.31), in order to convince the reader of the value 
of this set up. 

(i) T\ and T2 are fractional transformations with numerator and 
denominator homogeneous of degree one, respectively two. However, 
many models in population genetics lead to more complicated 2"'s. 
E.g., Prout (1968), Karlin and Feldman (1968a and b), and Scudo 
and Karlin (1969), Karlin and Scudo (1969) have investigated mating 
rules which take into account preferences or antipreferences for mat­
ing between individuals of the same type. For several of their rules 
one can construct a stochastic version analogous to the stochastic 
version of the Fisher-Wright-Haldane model. (2.30) and (2.31) will 
again be satisfied but with more complicated r and T than in (2.22)-
(2.28). For the rules of Karlin and Scudo, T often is a fractional trans­
formation of degree 3 or 4. One possible stochastic version of Prout's 
"polygamous" rule leads to 

Tx(i) 
j,k L I J 

Z) ƒ(*» I j , k)x(j)x(k) X) *(QwO', i) 
m,j,k L I J 

for suitable ƒ (i \ j , k) and w(ij) ^ 0 . One is also led to more complicated 
T's when one distinguishes individuals by sex (see Kesten (1970)). 
We remark that complication of T causes major difficulties, whereas 
complications in r are relatively easy to handle. 

(ii) Feller (1950), §10, suggested a model for a population with 2 
types. Formula (10.3) of Feller gives the transition probabilities from 
one generation to the next. In our notation it reads 

P{Zn+1(i) = ki, i = 1, 2 I Z0, • • • , Z„, Zn(i) =ji, i = 1, 2} 

(2.32) Nl *i t V l ^ vtf-*i-*2 
= ; —- Pl p2 {1 — pi — p2) , 

hlktKN-ki-kàl 

where 
N = aiji + 0-2̂ 2 for some positive integers ai and a^ and 
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pi = —- (1 - vOO- - on) + — " (1 - P2)a2i 

N N 

p2 = —- (1 - ? iM + —- (1 — *>2)(1 - a2), 
N N 

for some O^ce*, J>»^1 . One easily derives from properties of the tri­
nomial distribution (2.32) that in this model (2.30) and (2.31) hold 
with S = J, 

#i _ oc(l)ai(l — i>i)(l — ai) + s(2)<r2(l — v2)a2 

~ pi + p2 ~ *(l)<ri(l ~ ?i) + *(2)cr,(l - v2) 

Tx{2) = 1 - Tx(l), 

and 
r(Z) = <ri(l - »i)Z(l) + <r2(l - v2)Z{2). 

Thus, even though this process is not at all a Galton-Watson process, 
we are led to a transformation which has the same form as 7i, which 
originally came from a Galton-Watson model. Feller did not derive 
any limit laws for this model, but it follows from our theory that this 
model will satisfy the limit laws o f a Galton-Watson process, i.e., (2.11)-
(2.13), when one takes 

_ /<ri(l ~ *'i)(l ~ <xi) cri(l — vi)ai \ 

\ o-2(l — v2)a2 a2(l — *>2)(1 — a2)/ 

and assumes 0<mitj<co. 
(iii) Professor P. Ney (private communication) has considered 

some models in which individuals or particles of different types can 
neutralize each other. I t is conceivable that such phenomena occur 
when an antibody interacts with a tumor cell. Both may be con­
sidered inactive after they meet and the model keeps track only of the 
particles which are still "active". The simplest such model would have 
only two kinds of particles. If 

%n(i) = {# of active particles of type i in nth. generation} 

then always Zn(l)Zn(2) =0 , i.e., only particles of one type remain 
active after the neutralization takes place. Assume for instance that 
ZW(1)>0, Zw (2)=0. Then the Zn(\) particles of type one produce 
particles of both types independently of each other and according to a 
fixed distribution F\. The particles themselves die afterwards. Assume 
Yn(i) particles of type i, i — 1 or 2, have been produced. Then neutral­
ization will take place between as many pairs as possible, i.e., between 



I97i] SOME NONLINEAR STOCHASTIC GROWTH MODELS 501 

min(Fw( l) , Fn(2)), (1, 2)-pairs and the (n + l)st generation consists of 
the remaining particles, i.e., 

Zn+1(i) = Yn(ï) - min(Fn(l) , F„(2)). 

An analogous description applies when ZM(1)=0, Z n (2 )>0 . In our 
notation we take d = 2 ; at all times one of 3 possibilities occurs : Either 
Z»(l) =Zn(2) = 0 or Z„(l) > 0 , Z„(2) = 0 or Zn( l) =0 , Zn(2) > 0 . Again 
put 

w»-,j = E{# of j-particles produced by an i-particle} 

and assume that the variance of the number of particles produced by 
any particle is finite. Assume also 

(2.33) wi.i > mi,2 and m2>2 > w2,i. 

Then it follows from Chebychev's inequality that for a^K^{ Z n ( l ) } 1 / 2 

P{ | Z„+1(l) — (w l f l — f»i,2)Z„(l) | 

à « { Z ^ l ) } 1 ' 2 or Zw+1(2) ^ 0 | Zo, • • • , Zn\ S K,a~\ 

on the set Zw(l) > 0 , Z»(2) =0 , and a similar relation holds on Zw(l) 
= 0, Zn(2) > 0 . This again gives (2.30) and (2.31) with ô = | if we take 

r(i, o) = (i, o), r(o, l) = (o, i) 
and 

r(Z) = (mltl - Wi,2)Z(l) when Z(l) > 0, Z(2) = 0, 

r(Z) = (f»2t2 - m2,i)Z(2) when Z(l) = 0, Z(2) > 0. 

Since zn = ( l , 0) or (0, 1) for all n with Z n ^ 0 it is not necessary to 
define T or r elsewhere in this case. Note that another T has to be 
used when one or both inequalities in (2.33) are reversed. 

(iv) A considerable amount of work in mathematical economics is 
based on the so-called Solow-Samuelson model (Solow and Samuelson 
(1953)). Here Zn(i) denotes the amount of the ith. commodity at time 
n. In the deterministic version it is assumed that 

(2.34) Zn+l{i) = ff<(Z»(.)), l û i ^ d , 

where, for 1 Si^d, 

(2.35) Hi^O, Hi{') is continuous and homogeneous of degree one, 

and 

(2.36) Hi(Z') ^Hi(Z") whenever Z'(j) ^Z"(j), 1 £j£d. 
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For instance Hi could be given by 

a d 

(2.37) Hi(Z) = I l {Z(J)}a* i°r some aj S; 0, £ ) <xy = 1. 

Let JET(Z) stand for the vector (#i(Z), • • , Hd(Z)) and put 

r** = TST ' * G A> and T ( z ( ' ) ) = I H W I . 
Then, (2.34) can be written in the form 

(2.38) Zw+1 = T ( Z » ( - ) ) Z V 

Stigum (1971) has considered a stochastic version of this model. He 
postulated 

E{Zn+i\ Z0, • • • , Zn} = r(Zn('))Tzn 

and 
<72{Zn+1(*) | Zo, • • . , Zn} S K7 | Zn I2"25 

for some 5 > 0 , K7 < oo, instead of the deterministic relation (2.38). By 
Chebychev's inequality this again gives (2.31) so that Stigum's 
modification under uncertainty of the Solow-Samuelson model pro­
vides another example for our set up (for further work along these 
lines see Kesten and Stigum (1972)). Note that T can be very com­
plicated in this example (e.g. if (2.37) holds for some i). However, the 
assumptions (2.35) and (2.36) make this case quite manageable. In 
fact an analogue of the Perron-Frobenius theorem was proved for 
such T by Solow and Samuelson (1953) and Stigum (1971): If the 
map Z-*H(Z) is indecomposable, then there exists a unique p > 0 and 
a unique v(EA such that H(v) =pv. Moreover all v(i)>0. If, for all 

/dHi(Z)\ 

\ àZ(J) )z~v 

exists and is strictly positive then 

H"(Z) 
(2.39) y(Z)v ^ K8\

n, n^O, Z(i) > 0, 1 S i ^ d, 

for some y(Z)>0, Ks<co and 0 ^ X < 1 . (Hn is the nth iterate of H\ 
indecomposability of H is defined in Stigum (1971) and is an analogue 
of the condition tmj>0 in (2.7). For generalizations to decomposable 
jffsee Kesten and Stigum (1972).) As we shall see in the next section 
this lemma allows one to derive analogues of (2.11)—(2.13). Un-
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fortunately (2.35)-(2.36) do not hold in the Fisher-Wright-Haldane 
model or other population genetics models. Most importantly, the 
monotonicity property (2.36) fails; the (n + l)st generation can 
actually be decreased when the nth generation is increased. Indeed 
one has reduced certain pest populations by releasing large numbers 
of sterile individuals (see for instance Baumhofer, et al. (1955)). 

3. Limit theorems. The first problem we face is to find the candi­
dates for the growth rate or Malthusian parameterp. We take our cue 
from a deterministic version of the model. I.e., we consider for a mo­
ment the relation 

(3.1) Zn+l = r(Zn('))Tzn 

as strictly valid. In view of (2.29), (3.1) implies 

(3.2) \Zn+1\ - r ( Z . ( . ) ) , i ^ i = ^ ^ 

and 

(3.3) zn+i = Tzn. 

Thus, if p~n\Zn\ is to have a positive limit, we must have 

\Zn+1\ r(Zn(0) 
(3.4) 

£n I J ^nJ 

Looking at our examples (2.27) and (2.28) for r, we see that 
(3.4) essentially can occur only when zn itself converges and when 
r ( Z n ( - ) ) / | ^ n | is "smooth." Specifically we shall assume that r satis­
fies the following smoothness condition : 

There exists a function p:A—>R+ and constants K9< oo and /3>0 
such that for x£^4, Z&(R+)d, 

(3.5) 
r(2(0) 

- p(x) \A 
< r / | 2 ( 0 + i*h) 

For technical reasons we also have to introduce a Lipschitz condition 
forT: 

(3.6) | Tx - Ty\ ^ K10\ x - y\ , x, y G A, 

for suitable Ki0< oo. Clearly (3.6) holds for 7\ and T2 and (3.5) for 
(2.27) and (2.28). 

In particular (3.6) requires T to be continuous and therefore 
zn—>pGA is possible only if p is a fixed point of T (see (3.3)). These 
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considerations pretty much tell us what to expect in the case where T 
has a unique fixed point pÇEA which is globally strongly stable, in the 
sense that for some Kn < oo, 0 gXi < 1, 

(3.7) \T*x-p\ ^Ktrhl 

For, in the deterministic case we then have 

(3.8) \*»~P\ = I T \ -p\ £ Kn\ï, 

and if 

(3.9) P = p(p) > 1, 

then for sufficiently large \Z0\ we have eventually (by (3.8) and (3.5)) 

« u\\ 1 Z*+*1 T(z»(')) _ . A 
(3-10) i z r " " r a " P>L 

I t is not hard to derive from (3.8), (2.30), (3.5) and (3.9) that 
(3.11) lim = wp 

n-»«> pn 

for some 

(3.12) w = w(Z0(-)) > 0 for | Z 0 | sufficiently large. 

On the other hand, if (3.9) is replaced by 

(3.13) P = p(p) < 1, 

then (2.30), (3.8) and (3.5) imply that \Zn\ remains bounded. 
If >̂ is not the unique fixed point of T, (3.8) may still hold for some 

fixed point p of T. Of course it will now depend on the starting point 
So to which fixed point p zn converges. Nevertheless, when zn satisfies 
(3.8), and (2.30), (3.5) and (3.9) (or (3.13)) hold, then (3.11) (re­
spectively the boundedness of \Zn\) follows. Notice that p in (3.11) 
and (3.13) depends on p so that in this case the eventual growth rate 
may depend on the starting point z0, and, for certain z0, \ Zn\ may re­
main bounded. 

Finally we turn to the results for the stochastic model. The first 
result is an immediate analogue of the above deterministic considera­
tions. 

THEOREM 1 (KESTEN AND STIGUM (1972)). Let p be a fixed point of 
the transformation T:A—>A, and U(ZA a neighborhood of p such that 
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(3.14) I Tnx-p\ ^Ku\ni 

for some i£n<oo, 0 ^ X i < l , and all x £ £ / . Assume in addition that 
(2.30), (3.5) and (3.6) hold, as well as (2.31) for 0^a^K6\Zn\

2S for 
some KG < oo and 0 < S ^ J. Finally assume 

(3.15) p(p) > 1. 

There then exists a Ki2 < oo such that 

P 

( Zn{-) ) 
P < lim = wp( • ) for some w > 0 Z0( • ) / 

U-^» pn ) 
(3.16) 

K\2 
^> I wfoenever 20 £ £ƒ. 

| Z o | » 

If instead of {3.15) one has 

(3.17) p(#) < 1 

(&w/ the other conditions still hold) then 
(3.18) P{ | Zn | -> oo awrf sn -> ^} = 0. 

When we compare this theorem with the deterministic results 
above, we see that the basic content of this theorem is that the 
stochastic variations do not matter very much once the population 
becomes large. When p is locally strongly stable (i.e., satisfies (3.14)) 
and p(p)>l then for large \Z0\ the asymptotic direction of Zn(>) 
will, with high probability, be the direction of p, as in (3.11). Also the 
exponential growth rate is, with high probability, the same as in the 
deterministic case and the stochastic variations only influence the 
asymptotic size of Zn through the random factor w. The idea of the 
proof is of course that when \Zn\ is large, then (2.31) guarantees that, 
with high probability, one has 

\Zn+1\ r(Z„(.)) 
« p(zn) and zn+1 « Tzn. \ 7 \ \ 7 \ 

By iteration we find that, with high probability, 

Zn+k I 

TzJ 
{P(z„)}*, zn+k « Tkzn. 

But, when also z „ £ U, then Tkz„ is within Kn\\ of p and the main 
point is therefore to make sure that | zn+h — Tkz„ | is small even when k 
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goes to infinity with n. (3.6) is just the condition which makes this 
possible. 

Theorem 1 is quite satisfactory when 

,2 10v T has a unique fixed point p, which is globally strongly 
{6'19) stable, 

i.e., when we can take U = A in (3.14). I t is then possible to 
strengthen the conclusion (3.16), in the case p—p(p) > 1 , to 

( . Zn . . ) 
(3.20) P< lim — = wp f or some w > 0 or \ Zn\ remains bounded} = 1. 

U — p n ) 
Also, if p —p(p) < 1 and | Zn| < 1 implies Zm = 0 for all tn^n, as is the 
case in biological situations, (3.18) can under mild additional condi­
tions be strengthened to 

(3.21) P{Zn = 0 eventually} = 1. 

(See Kesten (1970), especially Lemma 6.2, or Kesten (1972).) Ad­
mittedly (3.19) is a severe limitation on T, but as we saw in §2 it is 
satisfied for the Galton-Watson process (T~Ti, see (2.9)) and the 
Solow-Samuelson model ( r = r 3 , see (2.39)). There are, however, 
still quite a number of problems open when T has more than one fixed 
point. To avoid serious difficulties we have restricted ourselves to 
continuously differ entiahle transformations T with a finite number of 
fixed points, pi, • • * , pk say, and such that, for each xÇzA, 

(3.22) lim^oo Tnx exists and equals some pi. 

The ideal theorem for this situation would have as its conclusion 

(3.23) " I « ^ (p (^ )» 

some pi with p(pi) > 1 or \ Zn\ remains bounded> = 1. 

' < either lim / = wpi for some w > 0 and 

We are still far from proving (3.23) in general, but we can prove it for 
the classical form of the Fisher-Wright-Haldane model which corre­
sponds to the following choice f or ƒ ( • | -, • ) : 

(3.24) f(i | j , k) = Cw3;k(ôij + ôi,k) 

for some constant C and 

(3.25) wj,k = wkj. 

For this choice of coefficients we shall use T4 instead of T2, so that 
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d 

x(i) Yi x(j)ws.i 

(3.26) T*x(i) = — ; lûiûd. 
d 

Despite the special character of (3.24) and (3.25), T± has considerable 
importance in genetics. I t describes selection operating at one locus 
with d alleles, but without mutation, i.e., a (j, k)-pair can only have 
children of type j or k. The asymptotic behavior of T±x has been 
intensively studied and is almost fully known (see for instance the 
references for the Fisher-Wright-Haldane model given in §2). A few 
further conditions are needed in order to justify the conclusion (3.23) 
for r 4 . We shall only state the most important conditions and refer 
the reader to Kesten (1972) for the full details. Firstly, it is known 
that T± has only finitely many fixed points and satisfies (3.22) when 

(3.27) all principal subdeterminants of W=(witj)i^itj^d are differ­
ent from 0. (See Karlin (1962/63), Blakley (1964), Theorems 2, 4 and 
6, Mulholland and Smith (1959).) Henceforth we assume (3.27). The 
r of (2.28) for the choice (3.24) and (3.25) of coefficients becomes 

(3.28) r(Zn(-)) = C\Zn\ X Zn(j)zn(k)wjtk, 

and therefore p( • ) should be defined by 

(3.29) p(x) = C X) x{j)x{h)wj k. 

Our second assumption is that 

(3.30) p(p) ^ 1 for all fixed points p of 7V 

Our third assumption concerns the linearization Mi of T4 near its 
fixed point pi. Mi is the differential of T4 at pi. Here we view T4 as a 
transformation of the (d — 1) dimensional space A into itself. Thus Mi 
is a linear transformation from Rd~~l into Rd~~l which satisfies 

(3.31) (Pi(Tx) = Mi(<pix) + o( | x — pi| ) (x—>pi, x £ A), 

where <pi\A—*Rd~l is defined by 

(3.32) <pi(x) = (*(1) - Pi(l), • • • , x(d - 1) - Pi(d - 1)). 

Let |Xf| ^ • • • ^ |>4-i| be the eigenvalues of Mi. We then assume 
(3.33) |Xf | 9* 1 for 1 Sj^d- l a n d all fixed points p4 with p(pi)> I. 
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THEOREM 2 (WITHOUT THE FULL SET OF CONDITIONS). If Zn satisfies 
(2.31) for T^Ti and r as in (3.28) and if W is such that (3.27), (3.30) 
and (3.33) hold, then (3.23) holds. 

We can say more about the possible limits pi of zn. Not every pi 
with p(pi) > 1 can occur and this is perhaps the most interesting differ­
ence between the deterministic and stochastic case. Let pi be such that 

|xi°| ^ ^ |xi°| > i> \\Z\ *•••* |*£ | . 
Thus 5 is the number of eigenvalues of Mi which exceed one in 
absolute value. If 5 = 0 ,then pi is locally strongly stable (see Ostrow-
ski (1966), Theorem 22.1 with proof) and Theorem 1 applies to pi. If 
s=d — l then pi is a point of definite repulsion (see Ostrowski (1966), 
Theorems 22.2 and 21.1 with proofs) and T\x-frpi for any x^pi. 
However, if l^s^d—1 then there exists a (d — l—s)dimensional set 
Si, the so called stable manifold of T4 at pi, such that 

T^x •—> pi, (n —» oo ) for all x £ Si, 

(see Smale (1963), §3, also Kesten (1972)). Thus, there do exist initial 
points x such that T\x converges to pi even though pi is locally not 
strongly stable, i.e. does not satisfy (3.14) when |Xit}| > 1. This, how­
ever, is not possible in the stochastic model, i.e. we have the following: 

ADDENDUM TO THEOREM 2. (Under the hypotheses of Theorem 2). 

P < lim = wpi for some w > 0, and 

some pi with p(pi) > 1 or \ Zn\ remains bounded; if | Zn(j) | —> oo 

for ally, then even | \(? | < 1 for all 1 ^ / ^ d - l i = 1. 

This addendum justifies, to some extent, the feeling one has that if pt 

is not stable, then the random fluctuations will move the sample point 
off Si and eventually to another fixed point (compare the comments 
in Blakley (1965), §5). This is indeed the case, if the random fluctua­
tions are large enough, as made precise in condition (3.34) below. 
Theorem 3 is a general theorem which excludes exponential growth 
with convergence to a nonstable fixed point. For simplicity we restrict 
ourselves to interior fixed points. (For details see Kesten (1972).) 

THEOREM 3. Let {Zn}n^0, T and r satisfy (2.30), (2.31) with 5 = | 
and (3.5). Let T be continuously differentiable and p — Tp, p(i)>0, 
1 Si^d, and let M be the linearization of T near p (compare (3.31) and 
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(3.32)). Assume p(p)^l and that the eigenvalues Xi, • • • , Xd_i of M 
satisfy 

|Xi | > 1, \\i\ s* 1, 2 ^ i ^ d - 1. 

Finally, let 

H = jffGi*d: 2>(0 = °} 

and assume that for each open set V<H> there exist 5 ( F ) > 0 and 
K(V)<<*> such that 

P{ | Zn I
1/2 (*+i - Tzn) E V | Zo, • • • , Zn} à «(F) 

(3.34) f l . 
on the set {\Zn\ è # ( F ) } . 

(3.35) P{ | Zn | -> oo and zn -» p\ = 0 . 

We conclude this report with a list of some problems, which are 
immediately suggested by the above. 

(a) What happens near a strongly stable fixed point p with p(p) = 1. 
None of the above theorems covers this situation? 

(b) What happens near a fixed point p which is stable but not 
strongly so, in the sense that Tnx—>p (n—+ oo ) for all x in a neighbor­
hood Uoi p, but (3.14) does not hold? The largest eigenvalue Xi of the 
linearization of T near p must have absolute value one in this case, 
and | Tnx—p\ may decrease only as a negative power of n. This situa­
tion actually occurs in several biological cases as one sees from the 
detailed convergence analysis made by Karlin and Feldman (1968a 
and b), Scudo and Karlin (1969) and Karlin and Scudo (1969). 

(c) What is the analogue of Theorem 2 for the Fisher-Wright-
Haldane model and T4 when T4 has infinitely many fixed points, i.e., 
when (3.27) is violated? We do not even know the full story about the 
behavior of T\x in the deterministic case then. (See, however, 
Theorem 5.1 in Blakley and Dixon (1964).) More generally one would 
like to treat the Fisher-Wright-Haldane model without specializing 
the coefficients by (3.24) and (3.25). Presumably one has to find a 
way to patch together a global result from the local Theorems 1 and 3. 

(d) Compute or estimate the probabilities of \Zn\ remaining 
bounded, of the population becoming extinct, or of zn converging to a 
specific fixed point. These seem to be the most interesting quantities 
to the population geneticist. 
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(e) Derive results about the transient behavior of populations 
which have a very large extinction time (see the end of §1). This will 
probably require other models than the ones considered here. 
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