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1. Introduction. Let QL denote the group of cobordism classes of
oriented Poincaré duality spaces of dimension #. (See [2] for defini-
tions.) The Pontrjagin-Thom construction yields a natural homo-
morphism p:QEP—r,(MSG) where MSG is the Thom spectrum
associated to the universal spherical fibration over BSG.

N. Levitt [2] has shown that if 33 (mod 4), then p is surjective,
and if =3 (mod 4), then cokernel(p)C Z,. More precisely, Levitt
has shown that, if #=3, there is a subgroup &, CQ.° (it is likely that
0, =0rP) and an exact sequence

(1.0 . ——>P,.—->Q,.£>1r,,(MSG) —> Py -

where P,=2Z, 0, Z,, 0 as =0, 1, 2, 3 (mod 4), respectively. Further,
image(P,) CQLP is generated by the cobordism class [K”] where, if
n=0 (mod 4), K" is the almost parallelizable Milnor manifold of index
8, and, if #=2 (mod 4), K” is the almost parallelizable Kervaire
manifold constructed by plumbing together the tangent bundles of
two (n/2)-spheres. (K*is not a manifold, but it is a Poincaré duality
space.)
Our main results, proved in §2, are the following.

TrHEOREM 1.1. The Kervaire manifold, K**?, bounds a Poincaré
duality space.

THEOREM 1.2. The Milnor manifold, K*, is Poincaré duality co-
bordant to 8(CP(2))*.

It follows from Theorem 1.1 that the long exact sequence (1.0)
contains short exact sequences

0 — Quys — T 3(MSG) — Z, — 0.

Our proof of Theorem 1.1 can be formulated to show that this se-
quence is actually split exact.
Theorem 1.2 describes the short exact sequences

0—Z— 0y — 74(MSG) — 0
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which occur in (1.0). For, Q4 is a direct sum of Z and the subgroup
of Q of elements of index zero and [(CP(2))*] can be chosen as a
generator of the summand Z.

Since it is not known if 8,=0QLP, it does not follow immediately
that the cokernel of p:Qh2 ;—7u4s(MSG) is Z,. However, this is, in
fact, the case and in §3 we outline a second proof of Theorem 1.1
(actually, the original proof), due to the first-named author of this
note, which shows this additional fact.

2. Proof of Theorems 1.1 and 1.2. Suppose given a diagram

vy = Em

lfl

Nn S Mn
where N* and M”" are closed, oriented manifolds, vy is the normal
bundle of N*, £y is a bundle fibre homotopy equivalent to the normal
bundle of M*, f is a map of degree one, and f is a bundle map covering
f- Then there is associated a surgery obstruction, s(N®, f) EP,, to
constructing a homotopy equivalence cobordant to (N, f). The sur-
gery obstruction, s, satisfies the following product formula of Sullivan
[3]:
s(L% X N», 1 X f) = index(L%*)-s(N, f).

If n=0 (mod 4), then s(N*, }) = (1/8) (index(N") —index(M™)).
Now, Theorem 1.1 is obvious if =0 since K2=.S'XS!'=1712, Also,
there is a well-known normal map

yT2~—)pSR
L
I*—§?

with s(72, f)=1. Then s(CP(2k) XT2, 1Xf)=1, and the technique
of surgery can be used to construct a (normal) cobordism from
1Xf:CP(2k) XT?>—>CP(2k) XS? to g:W4%+t2—CP(2k)XS? where
W4+2 is the connected sum of K%+2 with a PL manifold V*+2 homo-
topy equivalent to CP(2k) X S2 Clearly, W#t+2 is a smooth boundary
since it is cobordant to CP(2k) X T2 But V*#+2 bounds a Poincaré
duality space because it is homotopy equivalent to CP(2k) X.S2.
Thus, the difference [W4+2]— [V#+2]=[K4%+2]=0. This proves
Theorem 1.1.

For Theorem 1.2, we distinguish the cases k=1 and £>1. If k=1,
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this has been shown by Wall, and follows from the fact that the index
homomorphism Q;°—Z is an isomorphism. If 2>1, we proceed as
follows. Let H denote the canonical complex line bundle over CP(2).
Then 24H is fibre homotopically trivial. Hence, there is a manifold
N* and a diagram

VN /™ E

1 7 !

N4> CP(2)
where £ =vcp@e)—24H. By the Hirzebruch index theorem, index(V*4)
=9, and hence s(V4, ) = (1/8) (index(N*) —index(CP(2))) =1. Also,
N* is smoothly cobordant to 9(CP(2)). By the product formula,
s((CP(2))k1X N4, 1 Xf)=1. Again by surgery, 1 Xf:(CP(2))¥*1XN*
—(CP(2))*1X CP(2) =(CP(2))* is cobordant to g:W*—(CP(2))*
where W* is the connected sum of K* and a PL manifold V*
homotopy equivalent to (CP(2))*. Since W* is smoothly cobordant
to (CP(2))*1X N4 hence to 9(CP(2))*, and since V* is Poincaré
duality cobordant to (CP(2))*, it follows that the difference [W*]
— [V#*]=[K*%] is Poincaré duality cobordant to 8(CP(2))*. This
proves Theorem 1.2.

3. Additional comments. Let K(Z,, 2k+1)—BSG(vo111)—BSG be
the fibration which kills the Wu class vg41 EH2#+D(BSG, Z3) [1].
Let MSG(vst41)) be the Thom spectrum associated to the universal
bundle pulled back to BSG{vsi1y). If M*+3 is a Poincaré duality
space, then vy¢11)(M#+3) =0; hence the classifying map for the nor-
mal spherical fibration, M#%+t3—BSG, lifts to a map M%+3
—BSG{v2141y). It follows that if the Pontrjagin-Thom homomorphism
P00 5T u1s(MSG) is surjective, then the natural homomorphism
Ta13(MSG@2041y) DT r13(MSG) is also surjective.

In [1] it is shown that there is an exact sequence

i .
0 — Zy > 1 s(MSG, MSG(v30011)) 2> Hupps(MSG, Zs) —O.
It can further be shown that
image(1r4k+3(MSG) hd 11'41;+3(MSG, MSG('L‘z(k+1)))) = 1(22) = Zs.

In particular, mus(MSG{W2p+1)))—Tar3(MSG) is not surjective;
hence p:Qms—Tas(MSG) is not surjective.

This argument provides a homotopy theoretic description of
Levitt’s obstruction to transversality, mu43(MSG)—2Z,, which occurs
in the exact sequence (1.0). Namely, with the identification of their
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images, Levitt’s homomorphism coincides with the homomorphism
Tu43(MSG) =T a1s(MSG, MSG(v2441)))-

REFERENCES

1. W. Browder, The Kervaire invariant of framed manifolds and its generalization,
Ann. of Math. (2) 90 (1969), 157-186. MR 40 #4963.

2. N. Levitt, Generalized Thom spectra and transversality for spherical fibrations,
Bull. Amer. Math. Soc. 76 (1970), 727-731.

3. C. P. Rourke and D. Sullivan, A product formula for the surgery obstruction,
University of Warwick, 1970 (mimeographed).

PrINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08540

STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94305



