A NOTE ON COBORDISM OF POINCARÉ DUALITY SPACES

BY W. BROWDER AND G. BRUMFIEL

Communicated by Emery Thomas, October 29, 1970

1. Introduction. Let Ω_n^{PD} denote the group of cobordism classes of oriented Poincaré duality spaces of dimension *n*. (See [2] for definitions.) The Pontrjagin-Thom construction yields a natural homomorphism $p:\Omega_n^{PD} \to \pi_n(MSG)$ where MSG is the Thom spectrum associated to the universal spherical fibration over BSG.

N. Levitt [2] has shown that if $n \not\equiv 3 \pmod{4}$, then p is surjective, and if $n \equiv 3 \pmod{4}$, then cokernel $(p) \subseteq \mathbb{Z}_2$. More precisely, Levitt has shown that, if $n \ge 3$, there is a subgroup $\overline{\Omega}_n \subseteq \Omega_n^{\text{PD}}$ (it is likely that $\overline{\Omega}_n = \Omega_n^{\text{PD}}$) and an exact sequence

(1.0)
$$\cdots \to P_n \to \overline{\Omega}_n \xrightarrow{p} \pi_n(MSG) \to P_{n-1} \to \cdots$$

where $P_n = \mathbb{Z}$, 0, \mathbb{Z}_2 , 0 as $n \equiv 0, 1, 2, 3 \pmod{4}$, respectively. Further, image $(P_n) \subset \Omega_n^{\text{PD}}$ is generated by the cobordism class $[K^n]$ where, if $n \equiv 0 \pmod{4}$, K^n is the almost parallelizable Milnor manifold of index 8, and, if $n \equiv 2 \pmod{4}$, K^n is the almost parallelizable Kervaire manifold constructed by plumbing together the tangent bundles of two (n/2)-spheres. (K^4 is not a manifold, but it is a Poincaré duality space.)

Our main results, proved in §2, are the following.

THEOREM 1.1. The Kervaire manifold, K^{4k+2} , bounds a Poincaré duality space.

THEOREM 1.2. The Milnor manifold, K^{4k} , is Poincaré duality cobordant to $8(\mathbb{C}P(2))^k$.

It follows from Theorem 1.1 that the long exact sequence (1.0) contains short exact sequences

$$0 \to \overline{\Omega}_{4k+3} \to \pi_{4k+3}(MSG) \to \mathbb{Z}_2 \to 0.$$

Our proof of Theorem 1.1 can be formulated to show that this sequence is actually split exact.

Theorem 1.2 describes the short exact sequences

$$0 \to \mathbf{Z} \to \bar{\Omega}_{4k} \to \pi_{4k}(MSG) \to 0$$

Copyright @ 1971, American Mathematical Society

AMS 1970 subject classifications. Primary 57B10.

Key words and phrases. Poincaré duality spaces, cobordism, Kervaire manifolds.

which occur in (1.0). For, $\overline{\Omega}_{4k}$ is a direct sum of Z and the subgroup of $\overline{\Omega}_{4k}$ of elements of index zero and $[(CP(2))^k]$ can be chosen as a generator of the summand Z.

Since it is not known if $\bar{\Omega}_n = \Omega_n^{\text{PD}}$, it does not follow immediately that the cokernel of $p:\Omega_{4k+3}^{\text{PD}} \to \pi_{4k+3}(MSG)$ is \mathbb{Z}_2 . However, this is, in fact, the case and in §3 we outline a second proof of Theorem 1.1 (actually, the original proof), due to the first-named author of this note, which shows this additional fact.

2. Proof of Theorems 1.1 and 1.2. Suppose given a diagram

$$\nu_N \xrightarrow{\hat{f}} \xi_M$$
$$\downarrow \qquad \qquad \downarrow \\ N^n \xrightarrow{f} M^n$$

where N^n and M^n are closed, oriented manifolds, ν_N is the normal bundle of N^n , ξ_M is a bundle fibre homotopy equivalent to the normal bundle of M^n , f is a map of degree one, and \hat{f} is a bundle map covering f. Then there is associated a surgery obstruction, $s(N^n, \hat{f}) \in P_n$, to constructing a homotopy equivalence cobordant to (N^n, \hat{f}) . The surgery obstruction, s, satisfies the following product formula of Sullivan [3]:

$$s(L^{4k} \times N^n, 1 \times \hat{f}) = \operatorname{index}(L^{4k}) \cdot s(N^n, \hat{f}).$$

If $n \equiv 0 \pmod{4}$, then $s(N^n, \hat{f}) = (1/8) \pmod{N^n} - \operatorname{index}(M^n)$.

Now, Theorem 1.1 is obvious if k=0 since $K^2=S^1\times S^1=T^2$. Also, there is a well-known normal map

$$\nu_T^2 \xrightarrow{\hat{f}} \nu_S^2$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$T^2 \xrightarrow{f} S^2$$

with $s(T^2, \hat{f}) = 1$. Then $s(CP(2k) \times T^2, 1 \times \hat{f}) = 1$, and the technique of surgery can be used to construct a (normal) cobordism from $1 \times f: CP(2k) \times T^2 \rightarrow CP(2k) \times S^2$ to $g: W^{4k+2} \rightarrow CP(2k) \times S^2$ where W^{4k+2} is the connected sum of K^{4k+2} with a PL manifold V^{4k+2} homotopy equivalent to $CP(2k) \times S^2$. Clearly, W^{4k+2} is a smooth boundary since it is cobordant to $CP(2k) \times T^2$. But V^{4k+2} bounds a Poincaré duality space because it is homotopy equivalent to $CP(2k) \times S^2$. Thus, the difference $[W^{4k+2}] - [V^{4k+2}] = [K^{4k+2}] = 0$. This proves Theorem 1.1.

For Theorem 1.2, we distinguish the cases k=1 and k>1. If k=1,

this has been shown by Wall, and follows from the fact that the index homomorphism $\Omega_4^{PD} \rightarrow Z$ is an isomorphism. If k > 1, we proceed as follows. Let H denote the canonical complex line bundle over CP(2). Then 24H is fibre homotopically trivial. Hence, there is a manifold N^4 and a diagram

$$\nu_N \xrightarrow{f} \xi$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$N^4 \xrightarrow{f} CP(2)$$

where $\xi = \nu_{CP(2)} - 24H$. By the Hirzebruch index theorem, index (N^4) =9, and hence $s(N^4, f) = (1/8)(\operatorname{index}(N^4) - \operatorname{index}(CP(2))) = 1$. Also, N^4 is smoothly cobordant to 9(CP(2)). By the product formula, $s((CP(2))^{k-1} \times N^4, 1 \times f) = 1$. Again by surgery, $1 \times f: (CP(2))^{k-1} \times N^4$ $\rightarrow (CP(2))^{k-1} \times CP(2) = (CP(2))^k$ is cobordant to $g: W^{4k} \rightarrow (CP(2))^k$ where W^{4k} is the connected sum of K^{4k} and a PL manifold V^{4k} homotopy equivalent to $(CP(2))^k$. Since W^{4k} is smoothly cobordant to $(CP(2))^{k-1} \times N^4$, hence to $9(CP(2))^k$, and since V^{4k} is Poincaré duality cobordant to $(CP(2))^k$, it follows that the difference $[W^{4k}]$ $- [V^{4k}] = [K^{4k}]$ is Poincaré duality cobordant to $8(CP(2))^k$. This proves Theorem 1.2.

3. Additional comments. Let $K(\mathbf{Z}_2, 2k+1) \rightarrow BSG\langle v_{2k+1} \rangle \rightarrow BSG$ be the fibration which kills the Wu class $v_{2(k+1)} \in H^{2(k+1)}(BSG, \mathbf{Z}_2)$ [1]. Let $MSG\langle v_{2(k+1)} \rangle$ be the Thom spectrum associated to the universal bundle pulled back to $BSG\langle v_{2(k+1)} \rangle$. If M^{4k+3} is a Poincaré duality space, then $v_{2(k+1)}(M^{4k+3}) = 0$; hence the classifying map for the normal spherical fibration, $M^{4k+3} \rightarrow BSG$, lifts to a map M^{4k+3} $\rightarrow BSG\langle v_{2(k+1)} \rangle$. It follows that if the Pontrjagin-Thom homomorphism $p: \Omega_{4k+3}^{PD} \rightarrow \pi_{4k+3}(MSG)$ is surjective, then the natural homomorphism $\pi_{4k+3}(MSG\langle v_{2(k+1)} \rangle) \rightarrow \pi_{4k+3}(MSG)$ is also surjective.

In [1] it is shown that there is an exact sequence

$$0 \to \mathbb{Z}_2 \xrightarrow{i} \pi_{4k+3}(MSG, MSG\langle v_{2(k+1)} \rangle) \xrightarrow{j} H_{2k+1}(MSG, \mathbb{Z}_2) \to 0.$$

It can further be shown that

$$\operatorname{image}(\pi_{4k+3}(MSG) \to \pi_{4k+3}(MSG, MSG\langle v_{2(k+1)} \rangle)) = i(\mathbb{Z}_2) = \mathbb{Z}_2.$$

In particular, $\pi_{4k+3}(MSG\langle v_{2(k+1)}\rangle) \rightarrow \pi_{4k+3}(MSG)$ is not surjective; hence $p:\Omega_{4k+3}^{PD} \rightarrow \pi_{4k+3}(MSG)$ is not surjective.

This argument provides a homotopy theoretic description of Levitt's obstruction to transversality, $\pi_{4k+3}(MSG) \rightarrow \mathbb{Z}_2$, which occurs in the exact sequence (1.0). Namely, with the identification of their

images, Levitt's homomorphism coincides with the homomorphism $\pi_{4k+8}(MSG) \rightarrow \pi_{4k+8}(MSG, MSG\langle v_{2(k+1)} \rangle).$

403

References

1. W. Browder, The Kervaire invariant of framed manifolds and its generalization, Ann. of Math. (2) 90 (1969), 157-186. MR 40 #4963.

2. N. Levitt, Generalized Thom spectra and transversality for spherical fibrations, Bull. Amer. Math. Soc. 76 (1970), 727-731.

3. C. P. Rourke and D. Sullivan, A product formula for the surgery obstruction, University of Warwick, 1970 (mimeographed).

PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08540

STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94305