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A NORMAL SPACE X FOR WHICH X XI
IS NOT NORMAL
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In [1] C. Dowker gave a number of interesting characterizations of
normal Hausdorff spaces whose cartesian product with the closed
unit interval is not normal. Thus, such a space is often called a
Dowker space; a Dowker space X will be described below. It was
previously known only that the existence of a Dowker space is con-
sistent with the usual axioms of set theory [2], [3]. The proof that X
is a Dowker space uses no set theoretic assumptions beyond the axiom
of choice.

We use the convention that an ordinal N is the set of all ordinals
less than A\. An ordinal v is said to be cofinal with N if there is a subset
T of N\ order isomorphic with 4 such that a €\ implies o =8 for some
BET; let cf(\) be the smallest ordinal cofinal with A.

Define F= {f:wo—w.| Va€wo, f(n) Sw.+1}.

Define X = { f€ F| 3k Ew, such that YnEwo, wo<cf(f(n)) <w:}.

For f and g in F, define Uy, = {hEXI VnEwo, f(n) <h(n) <g(n)}.
Then topologize X by using the set of all Uy, for f and g in F as a basis
for the topology. The resulting space is a collectionwise normal
Dowker space.
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