A NORMAL SPACE X FOR WHICH $X \times I$ IS NOT NORMAL

BY MARY ELLEN RUDIN

Communicated by E. A. Michael, September 28, 1970

In [1] C. Dowker gave a number of interesting characterizations of normal Hausdorff spaces whose cartesian product with the closed unit interval is not normal. Thus, such a space is often called a Dowker space; a Dowker space X will be described below. It was previously known only that the existence of a Dowker space is consistent with the usual axioms of set theory [2], [3]. The proof that X is a Dowker space uses no set theoretic assumptions beyond the axiom of choice.

We use the convention that an ordinal λ is the set of all ordinals less than λ . An ordinal γ is said to be *cofinal* with λ if there is a subset Γ of λ order isomorphic with γ such that $\alpha \in \lambda$ implies $\alpha \leq \beta$ for some $\beta \in \Gamma$; let $cf(\lambda)$ be the smallest ordinal cofinal with λ .

Define $F = \{ f : \omega_0 \rightarrow \omega_\omega | \forall n \in \omega_0, f(n) \leq \omega_n + 1 \}.$

Define $X = \{ f \in F | \exists k \in \omega_0 \text{ such that } \forall n \in \omega_0, \omega_0 < \operatorname{cf}(f(n)) < \omega_k \}.$

For f and g in F, define $U_{fg} = \{h \in X \mid \forall n \in \omega_0, f(n) < h(n) \leq g(n)\}$. Then topologize X by using the set of all U_{fg} for f and g in F as a basis for the topology. The resulting space is a collectionwise normal Dowker space.

REFERENCES

- 1. C. H. Dowker, On countably paracompact spaces, Canad. J. Math. 3 (1951), 219-224. MR 13, 264.
- 2. M. E. Rudin, Countable paracompactness and Souslin's problem, Canad. J. Math. 7 (1953), 543-547. MR 17, 391.
- 3. S. Tennenbaum, Souslin's problem, Proc. Nat. Acad. Sci. U. S. A. 59 (1968), 60-63. MR 37 #55.

University of Wisconsin, Madison, Wisconsin 53706

AMS 1969 subject classifications. Primary 5420, 0415, 0430.

Key words and phrases. Dowker space, cartesian product, normal, binormal, collectionwise normal, countably paracompact.