
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 77, Number 1, January 1971 

RESEARCH ANNOUNCEMENTS 

The purpose of this department is to provide early announcement of significant 
new results, with some indications of proof. Although ordinarily a research announce­
ment should be a brief summary of a paper to be published in full elsewhere, papers 
giving complete proofs of results of exceptional interest are also solicited. Manuscripts 
more than eight typewritten double spaced pages long will not be considered as 
acceptable. All research announcements are communicated by members of the Coun­
cil of the American Mathematical Society. An author should send his paper directly 
to a Council member for consideration as a research announcement. A list of the 
members of the Council for 1971 is given at the end of this issue, 

NORMAL SOLVABILITY FOR NONLINEAR 
MAPPINGS INTO BANACH SPACES 

BY FELIX E. BROWDER 

Communicated August 20, 1970 

Let X be a topological space, F a Banach space, ƒ a mapping of X 
into F. The mapping ƒ is said to be normally solvable (following a sort 
of terminology due to Hausdorff for linear operators) if its image f(X) 
is closed in F, with F given its strong topology. The objective of the 
theory of normally solvable mappings is to establish conclusions on 
the fine structure of the image setf(X) from the hypothesis that f(X) 
is closed in F together with hypotheses concerning the asymptotic 
direction set DX(J) of ƒ at various points x of/, (conclusions which are 
also described as extensions of the Fredholm alternative to such non­
linear mappings/). The concept of asymptotic direction set is defined 
as follows: 

DEFINITION 1. Let X be a topological space, Y a Banach space, ƒ a 
mapping of X into Y,xa given point ofX. Then the asymptotic direction 
set DX(J) off at x is the subset of Y defined by 

D*(f) = 0 d({y | y G F, y « *(ƒ(«) - ƒ(*)), 
e>0 

€£o,«ex, | | / («)- /(*) | | <€}>, 
where cl denotes the closure in the strong topology on F. 

Under sharper hypotheses, we have the following description of the 
asymptotic direction set: 

PROPOSITION 1. Let X be a locally convex topological vector space, Y 
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a Banach space, ƒ a mapping of X into Y which is once Gateaux differ­
entiatie from X to Y at a given point x of X with differential dfx which 
is a continuous linear mapping from X to Y. Let (dfx)* be the dual map­
ping from F* to X*, N(dft) its nullspace, and (iV(d/*))x its anni-
hilaiorin Y. Then: 

D.(J) D c\(dfx(X)) « (N(df*x))\ 

Our basic result is the following: 

THEOREM 1. Let X be a topological space, Y a Banach space, ƒ a 
mapping of X into Y such that f (X) is closed in Y. Let y be a given point 
in Y, and for r>0, let Br{y) be the closed ball of radius r about y in F. 
Suppose that there exists r>0 and p<\ such that f~~l{Br(y)) is non­
empty, while for each x inf~l(Br(y)), 

dist(y - ƒ(*), Dx{f)) g p\\y - f(x)\\. 

Then : y lies inf(X). 

A global analogue of Theorem 1 is the following: 

THEOREM 2. Let Xbea topological space, Y a Banach space, ƒ a map 
of X into Y such that f {X) is closed in F. Suppose that for each y in Y, 
there exists r(y)>0 and p(y) < l such thatf^1{Br^V){y)) 9*0 for all y in 
Y, while for each x inf~l(Br(y) (y)), 

dist(y -ƒ(*) , Dx(f)) S p(y)\\y-Mil-

Then: F=/(X). 

Using Proposition 1, we obtain the following specializations of 
these results: 

COROLLARY 1 TO THEOREM 1. Let X be a locally convex topological 
vector space, Y a Banach space, ƒ a once Gateaux differentiable mapping 
of X into Y with f(X) closed in F. Let y be a given element of Y and 
suppose for an r>0 such thatf-l(Br(y)) ?*0 and for a given p<\ that 
for all x inf~l(Br(y)), we have 

\\y ~ ƒ(*) + N(dfx)%mdf*^ g p\\y - /(*)||F. 

Then : y lies inf(X). 

COROLLARY 1 TO THEOREM 2. Let X be a locally convex topological 
vector space, Y a Banach space, f a once Gateaux differ entiable mapping 
of X into Y with f(X) closed in F. Suppose that the hypotheses of the 
Corollary 1 to Theorem 1 hold for each y in F. Then f (X) is the whole of F. 
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Specializing still further by taking p = 0 and p(y)z=0, respectively, 
we obtain the following: 

COROLLARY 2 TO THEOREM 1. Let X be a locally convex topological 
vector space, Y a Banach space, f a once Gateaux differentiable mapping 
of X into Y with f {X) closed in Y. Let y be an element of Y, suppose that 
f~l(Br(y)) ?*0 for a given r>0 . Suppose that for each x in f~l(Br(y)) 
and each y * in N(df*), we have 

(y*, y - ƒ ( * ) ) - o . 
Then : y lies inf(X). 

COROLLARY 2 TO THEOREM 2. Let X be a locally convex topological 
vector space, Y a Banach space, ƒ a once Gateaux differ entiable mapping 
of X into Y such that f {X) is closed in Y. Suppose that for each x in X, 
N(df%) = {0}. Then :f(X) is the whole of Y. 

The special case of Corollary 2 to Theorem 1 in which Y is reflexive, 
f(X) is assumed to be weakly closed in Y, and r=dist(y, f(X)) was 
given by Pohozhayev in [ó]. The special case of Corollary 2 to 
Theorem 2 in which Y is uniformly convex was given by Pohozhayev 
[7]. The result of Theorem 2 for p(y) = 0 for all y, (which is roughly 
equivalent to assuming Dx(f) = Y for all x in X), was given by the 
writer for general Banach spaces Fin Browder [3 ]. This was extended 
in Browder [4] to mappings into infinite dimensional manifolds Y 
with the condition on Dx(f) imposed upon x in X — N only, with the 
exceptional set N compact or satisfying other negligibility conditions. 
As we note from the above, Theorems 1 and 2 are considerably 
sharper and more general than the Corollaries 2 stated above. 

We now proceed to the proof of Theorem 1, which is based upon the 
following Lemma: 

LEMMA. Let Y be a Banach space, So a bounded closed subset of Y, Ca 
closed cone in Y generated by a closed bounded convex subset F of Y which 
does not contain 0. Then there exists an element so of So such that 

(so + O H So = {*>}• 

The proof of the Lemma is given in §1 of Browder [4] and is based 
on an extension of the idea of the proof of the Bishop-Phelps Theorem 
[ i ] . 

PROOF OF THEOREM 1. Let S=*f(X), and suppose that d0 

= dist(;y, S)>0. We shall deduce a contradiction. For a given e>0, 
which we shall specify later in the proof, we may choose a point s in S 
such that 



76 F. E. BROWDER [January 

d « \\y - j | | g (1 + €)i0. 

(If there exists a points with ||y—s|| =do, we choose such an 5 in 5 and 
let € = 0.) By hypothesis, there exists p < 1 such that for every x in 
f~\Br(y)), there exists w in Dx(f) such that if Ç = ||y—/(#)||, then 
there exists w in Dx(f) such that ||£w — (y—ƒ(#)) || ^s££ with 0 g / > < l . 
We choose another constant q such that 0 ^p <q < 1. 

Let J3 be the closed ball of radius r — qdo about the point y in F. Let 
K be the convex closure of the union of the point {s} and the ball B. 
Then K is a closed bounded convex subset of F, and u is any point of 
JK", W may be written in the form 

u = (1 - t)s + tz, (zEB,te [0,1]). 

Let So = SCMC. Then So is a closed bounded subset of F. If w lies in S0, 
then 

rf0 £ ||« - y\\ g (1 - Oik - y|| + 'll« - y|| ^ (i - 0(i + «)<*o + Mo. 

Hence 

(1) * £ « ( « + (1 - J))"1. 

Let C be the closed cone with vertex at 0 in F spanned by the 
closed bounded convex set F~(B—s) which does not contain 0. If we 
apply the Lemma to the set So and the cone C, it follows that there 
exists a point So in So such that (so+C)P\So = {so}. Since SQ lies in So, 
So = (1 —t)s+tzf with z in B and / in [0, 1 ] satisfying the inequality (1) 
above. If y is an element of C, y can be written in the form 

y - É(*i - s), ft à 0, «x G 5 ) . 

Suppose t h a t ^ ^ O , and that v = (so+y) lies in S. Then: 

v = (1 - t)s + tz + £(*i - s) = (1 - t - Ö* + tz + &i 

- (1 - (/ + Q)s +(t + Q[t(f + ^z + {(/ + O-Î5J. 

Suppose that 

« ^ ( l - j K f + a - ? ) ) - 1 - * , (*>o). 

Then ( £ + £ ) ^ / + 8 ^ 1 , and v lies in ÜT. Then we should have v in 
SC\K = So, which contradicts the fact that S 0H (s0+C) = {s0}. Hence 
for any such v, £>8 , so that we have ||y|| =£||2i--s|| >8(1 —g)do = 8i. 
Thus, 

(sQ + C) r>i S r\ Bh(s0) - {s0}. 

Hence, for any point x in X for which So =ƒ(#), it follows that 

£>*(ƒ) H Int(C) « 0 , 
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where Int(C) denotes the interior of the cone C in F. For any such 
point x, we have 

l|y-/(*)||s||y-*ll + ll*-*.||, 
with (s—So) —t(s—z) in terms of the representation for s0 considered 
above with z in B. Therefore, 

b - /(*) | | ^ (1 + «)*> + *(* + (1 - ^))~1(l + 6 + q)d0 = do + esdo. 

If the constant r of the hypothesis exceeds do, we may choose e > 0 so 
small that do+esdo^r. If r=do, we choose e = 0, s = So, and x auto­
matically lies in f^(Brly)). In both cases, we may choose € sufficiently 
small so that x lies inf~l(Br{y)). 

Finally we conclude the proof by deducing that Dx(f)r\lnt(C) is 
nonempty for small e which contradicts our preceding argument. For 
the given point x, there exists w in DX(J) such that for £ = |b""~*/0*0|| 
= ||y--so||, wehave 

||£tc> - (y - So)\\ £ PZ, 

i.e. 

|| (Jo + fr) - y\\ S p\\y - Jolt ^ Pào + *psdo. 

We choose e so small that p+eps <q. Then (so+£w) lies in the interior 
of the ball B, i.e. %w lies in the interior of (B—SQ). Hence %w lies in 
the interior of C, and so does w itself, i.e. wÇ.Dx(J)r\lnt{C). 

This contradiction to the initial assumption that do is positive 
establishes the validity of the theorem, q.e.d. 
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