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ABSTRACT. This is a survey of one part of the area of interaction 
between complex analysis and functional analysis. The space of 
bounded analytic functions on an open set is considered under 
numerous topologies, unified by the theme of bounded pointwise 
convergence. Related problems in approximation theory, the struc­
ture of ideals of bounded analytic functions, and inner and outer 
(also interior and exterior) functions are discussed. 

I will give a prejudiced survey of some recent developments in the 
field of interaction between complex analysis and functional analysis. 
I will also pose a number of unsolved problems. The real measure of 
the mathematics I will discuss, in my opinion, is the problems it 
raises and the problems it solves in the hard analysis of bounded 
analytic functions. The basis of the work at hand is found in my 1966 
paper with Shields [23] and in my paper with Ryff [2l] that has 
appeared since this lecture was given. The central theme is the 
bounded convergence of a sequence of bounded analytic functions. 

Let G be an open set in the complex plane, and let BH(G) be the 
space of all bounded analytic functions on G. If {ƒ«} is a sequence of 
functions in BH(G), we say tha t fn converges boundedly t o / , and 
write fn^ft to mean that 

(i) {fn(z)} is uniformly bounded in G, and 
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(ii) fn(z)—>f(z) for each z G G. 
From the theory of normal families, it follows easily that (ii) may be 
replaced by 

(ü')fn(z)--*f(z) uniformly on compact subsets of G. 
Bounded convergence is a natural notion of convergence of a sequence 
of functions, and we ask whether there is a topology r for which 
ƒ»-!>ƒ if and only if ƒ»-?»ƒ. The answer is provided by a theorem to be 
found in [19]. The only thing about bounded convergence to check 
that is not completely trivial is the following: if it is not the case that 
ƒ»-£»ƒ, then there is a subsequence {fm\ of {ƒ„} such that for every 
subsequence {fp} of {fm), it is not the case that fp^*f. This is easy 
to prove, so there do exist such topologies. In fact there is a strongest 
such topology, that we designate by r . In this topology, a set Q 
QBH(G) is declared open if for each ƒ GB, and each sequence {/n} 
such that fn-^fy all but finitely many of the fn must lie in ft. This is 
the same as declaring a set KQBH(G) closed if it is sequentially 
closed, in the obvious sense. 

I am going to conduct an excursion through numerous topologies 
on BH(G), among them the topology r that will appear in several 
different disguises. Here is a table of the topologies. Don't be dis­
mayed by its length—I will explain them all and many of them will 
coincide. 

Table of topologies 
a weak-star 
j8 strict 
7 bounded weak-star 
H mixed 
m Mackey 
v narrow 
a norm 
r sequential 

In 1957, Buck [7] introduced the strict topology /3 on BH(G) in the 
special case where G = £> = {z: \z\ < 1 } is the unit disc. Shields and I 
in [23] extensively studied the strict topology in the case of the 
general region G. Let K(G) consist of all nonnegative functions k 
that are defined and continuous on G~, with k(z) = 0 for all zÇzdG. 
For fÇzBii(G) define the seminorm \\f\\k by 

||/l|*-Bup{|/(«)|*(*):seG}. 

The locally convex topology generated by this family of seminorms 
is the strict topology /?, and we denote by j8(G) the space BH(G) 
under this topology. I t is easy to see that j8(G) is a topological alge­
bra. 
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By H™(G)t I mean Bn(G) under the supremum norm \\f\\* 
~ s u p { | / ( s ) | *ZE.G}. The norm topology on BH{G) will be denoted 
by <T. In [23] we showed that H™(G) is always (isometrically iso­
morphic to) the dual space of a separable Banach space. Thus, it 
makes sense to talk of topologies like the weak-star topology a. 
Actually, as early as 1960, Havin found [17], [l8] a different repre­
sentation of H™{G) as a dual space, but he did not investigate 
whether his predual was separable. To consider our duality, let 
M{G) be the space of bounded complex-valued Borel measures ix 
with all their mass in G, and subject to the variation norm. Then 
M(G) is in duality {M{G), BH{G)) with BH(G) via the pairing </xt ƒ> 
=//rf/x. We write p.~v to mean that J fdix—ffdv for all f£I2//(G), 
and let N(G) — {(x:ix~0\. I t is easy to see that N(G) is a closed 
subspace of the Banach space M(G)f so that we may form the quo­
tient space 

MQ(G) « M(G)/N(G). 

We showed, without too much trouble, that 

H»(G) S (Mo(G))*, 

where ~ denotes isometric isomorphism. What is not so easy to see 
is that M(G)/N(G) is separable, since M(G) is certainly not separable. 
One way we handled this was to prove that for every measure \x 
ÇzM(G), there exists a measure ^ G i 1 ^ ) » such that v~ix and ||^|| 
g||/x||. Here Ll(G) consists of those measures in M(G) that are ab­
solutely continuous with respect to planar Lebesgue measure. To 
sketch our proof, we take first the hardest case, where p. is a point 
mass a t w—the general case follows from this one by standard 
balayage formulas from potential theory. Let Q be a closed annulus 
with center a t w so chosen that fiCG, and let v be the Cauchy inte­
gral averaged over the radii of the annulus. This means that if the 
inner radius of Q is a and the outer radius is b, then for a Borel set 
£ C G , 

vw(E) - - i - f " i~ f x*(Ö 7 ^ 4 dt> 
o — aJ t~a \2TTIJ \$~w\-t % — w) 

where XE is the characteristic function of E. In the case of a general 
measure /j£AT(G), w e i e t 

„(£) = ) vw(E)dii(w). 

I t is easy to see that v has the required properties. 

file:///2ttiJ
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I t follows that 

M(G)/N(G) S L^/WiG), 

where N1(G)=N(G)r\L1(G). Since Ll(G) is separable, so is 
L1(G)/N1(G)1 and it follows that M0(G) is separable. 

On H™(G) we may now put the weak-star topology a and the 
bounded weak-star topology 7, thinking of i?°°(G) as the dual of 
Mo(G). The topology a is just the topology of convergence on finite 
subsets of the predual. To describe the topology 7, let us move to 
the general context of a Banach space B and its dual 5 * . There are 
three equivalent formulations of the bounded weak-star topology 7 
on B*. First, 7 is the strongest topology that agrees with a on 
bounded sets, where a is the weak-star topology. Next, 7 is the 
topology of uniform convergence on compact subsets of B. Finally, 
7 is the topology of uniform convergence on sequences in B that 
tend in norm to 0. One of the main results that Ryff and I proved in 
[2l] is that j8=7. (Since then, Shapiro [27] has placed this result in 
a general setting. He shows that it holds because the unit ball in i?00 

is strictly compact.) Now it is easy to prove that on the dual of a 
separable Banach space, in the topology 7, a set is closed if it is 
sequentially closed. (This should be compared with a result of 
Banach that in the topology a, a convex set is closed if it is sequen­
tially closed.) Hence we have a soft proof of the unpublished result 
of Paul Hessler that in /3(G) a subset is closed if it is sequentially 
closed. From this result, it is easy to prove that j3=r, where r is the 
sequential topology introduced earlier. This may be considered a 
primary reason for studying the topology /3. I t emerges as the strong­
est topology on BH(G) in which a sequence converges if and only if 
it converges boundedly. 

Let me give brief consideration to another topology. Given a vector 
space with two suitable topologies on it, Wiweger [31 ] defines the 
mixed topology /x that lies, so to speak, halfway between them. In 
the context of BH(G), JU lies halfway between the topology of uniform 
convergence on compact subsets of G and the topology of uniform 
convergence on all of G. Cooper [9] has proved that /* =/3. This is yet 
another instance of a metamathematical rule called the "principle of 
conservation of topologies", to the effect that a natural object like 
BH{G) cannot support too many different interesting topologies. So 
far, I have said that j3=r =7=/* . There are several proofs, however, 
that a T^/3, and it is trivial that a^a and c^jS, so that our list of 
topologies so far reduces to just <r, a, j3. 

From the abstract characterizations we have iust given of the /3 
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topology, it is now possible to derive many of its properties that 
Shields and I originally used ad hoc methods for. For example, ft is 
complete because the dual of a Banach space, in the bounded weak-
star topology, is always complete. 

The last topology that I will burden you with here is the Mackey 
topology m on H°°(G) as the dual of M0(G). I t is the strongest 
topology on BH(G) that makes it into a locally convex topological 
vector space whose dual is MQ(G). I t is also characterized as the 
topology of uniform convergence on weakly compact, convex, and 
circled subsets of the predual M0(G). 

I t is a challenging question, raised by Shields and me in [23], and 
considered further by Ryff and me in [2l] whether j3 = w. The evi­
dence is now in that /3 9em as soon as BH{G) is not trivial, but to prove 
it is another matter. This contrasts with the work [28] of my former 
student B. A. Taylor, who investigated similar topologies on certain 
spaces of entire functions, and showed that the Mackey topology on 
them often does coincide with the topology given by a family of 
suitable weights. Tha t /3(G) j^m{G) was shown by Ryff and me to be 
equivalent to the assertion that there is a weakly compact subset of 
MQ(G) that is not strongly compact. In 1966, Conway [8] proved 
that fi(D) 7*m(D), and Ryff and I extended this result to regions G 
whose boundary contains a free continuum, and it is not hard to 
prove this (by a second method) for the case where the boundary of 
G contains any continuum at all. This second method of Ryff and 
myself proceeds by showing first that p(G) 9*m(G) if G supports a 
nonconstant hypo-inner function. Roughly speaking, a hypo-inner 
function ƒ on G is an analytic function such that | | / | |oo^l and yet 
\f(z)\ = 1 for 0 in a set of positive measure on the boundary of G. 

Let me make this notion precise. Suppose that G supports non-
constant bounded analytic functions, and suppose for convenience 
that G encloses no removable singularities for all bounded analytic 
functions. This last means that for each ZoGdG, there is &nfÇzBH{G) 
that does not extend as an analytic function in any neighborhood of 
So. Then the universal covering surface of G is conformally equivalent 
to the unit disc D so that we may identify it with D. There is a map 
<p:D—*G that is called the covering map, and the corresponding 
covering group r of G is the group of conformai one:one transforma­
tions T of D onto itself such that <p(z) =<p(Tz) for all zÇzD. Every 
function ƒ in BH(G) lifts via <p~~l (i.e. / # = / o<p) to a function ƒ# in 
BH(D) that isautomorphic: / # o T—fl for all TÇ.T. 

Now a function FE:BH(D) is called inner if IMLîSl and if 
| F*(ea)\ = 1 for almost all 0 (with respect to arc length), where F* 
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is the Fatou radial limit function associated with F; F*(ei$) 
= limr_i F(reie), which is defined almost everywhere. Further, F is 
called hypo-inner in D if only || F]]^ g 1 and | F(ei$) | = 1 for a set of 0 
of positive measure. For fGBH(G)t we say that ƒ is inner or hypo-
inner, if the lifted function ft is inner or hypo-inner, respectively. 
Ryff and I proved that jS^ra in case G supports nonconstant hypo-
inner functions. It is easy to show that it does in case there is a con­
tinuum in dG. Further, we proved by hammer and tongs classical 
analysis, that it does in case G is the complement of a closed set E 
on the real axis, such that E has positive linear measure. In the case 
of the general region G, one would guess that the solution, known to 
exist, of any of several extremal problems would be inner, and con­
sequently hypo-inner. For example, choose a point So£G and con­
sider J£:BH(G) SO that | | / | |co^l and / (2 0 )=0 , and maximize | / ' ( so) | . 
The extremal function is the so-called Ahlfors function, and in case 
G is finitely connected, it is known [2 ], [3 ] to be inner. 

I conjecture that the hypo-inner functions are just the weak-star 
exposed points of the unit ball of H°°(G). Stephen Fisher has shown 
me in a private communication that this is true in case G — D or if G 
is, more generally, a finite Riemann surface. If this conjecture were 
proved, what would be needed next would be a functional-analysis 
proof that such exposed points exist in abundance, under suitable 
general hypotheses on the underlying space. I am satisfied that this 
last topic is a good example of the interworking of the ideas of func­
tional analysis and classical analysis. 

Perhaps the main reason for introducing topologies on function 
spaces is for approximation problems. Let me begin with the problem 
of polynomial approximation. In 1934, Farrell [12] proved that if G 
is bounded and connected and if ƒ is a complex function defined on 
G y then there is a sequence {pn} of polynomials such that pn-^f if 
and only if ƒ has a bounded analytic extension to the inside of the 
outer boundary of G. Intuitively, what is meant by the inside of the 
outer boundary of G is clear. Formally, it is defined as the comple­
ment of the closure of the unbounded component of the complement 
of the closure of G. In 1964, Shields and I [22] extended this result 
to the general bounded open set G—it may have infinitely many 
components. The proof was constructive and used classical methods. 
Recently, Hoffman (see [29]) has derived a functional analysis proof 
of Farrell's theorem. His work has been generalized by Ahern and 
Sarason [ l ] to the general case considered by Shields and me, with 
some extensions to bounded approximation by rational functions on 
some special kinds of sets. Further, Sarason [25], [26] has extended 
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Farrell's result from sequential bounded polynomial approximation 
to polynomial approximation in the weak-star topology a. His work 
had applications in mind to problems of invariant spaces of analytic 
functions. 

Let me interpose here a quick solution to a problem transmitted 
privately to me by A. Wilansky, related to the work in [30, p. 52]. 
Call a topological space sequential if every sequentially closed set is 
closed. Improvising terminology, call it super-sequential if the se­
quential closure of any subset is its topological closure. The question 
is whether there is a linear topological space that is sequential but 
not super-sequential. In [4], Arhangel'skiï and Franklin showed that 
there is—their example is actually locally convex. But I can go one 
step further to give a locally convex topological algebra that is 
sequential but not super-sequential. I t is just 0(G) where G is the 
(somewhat pathological) region of Theorem 4.1 of [22]. The subset 
whose closure is not its sequential closure is just the polynomials, yet 
we have seen that 13(G) is a sequential locally convex topological 
algebra. 

Returning to approximation theory, consider the problem of 
bounded approximation by rational functions. To the best of my 
knowledge, it is still open, although partial results are known. To be 
precise, let G be an open set in the complex plane, and let RQ be the 
set of rational functions that belong to BH(G). What is the bounded 
sequential closure of R0? When is RQ pointwise boundedly (se­
quentially) dense in BH{G)? 

An interesting related question is the following: let £ be a point-
wise boundedly dense (p.b.d.) subset of BH(G). Under what further 
hypotheses must E be strongly pointwise boundedly dense (s.p.b.d.)? 
Here p.b.d. just means that for each fGBH(G) there is a sequence 
{en} of elements of E such that en^f. And s.p.b.d. means that we 
may, in addition, require that ||*n|U-H|jf||co. Now Davie showed in 
[11 ] (see also [l0]) that if A(G) is p.b.d. then it is s.p.b.d., thus 
proving a conjecture of Gamelin and Garnett. Here, A(G) is just the 
space of functions that are continuous on G~~ and analytic on G. 
Further, Gamelin and Garnett have shown in [16] that under suit­
able special hypotheses on G, RG is s.p.b.d. if it is p.b.d., a problem 
to which Fisher has contributed in [13]. One might think that if E 
is a subalgebra of BH(G), then p.b.d.=>s.p.b.d., but Davie has pri­
vately communicated a counterexample to me. 

When is A(G) p.b.d. in BH(G)? This question has been given an 
answer by Gamelin and Garnett in [16] in terms of analytic capac­
ity. The analytic capacity y(K) of a compact set K in the complex 
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plane is defined by y(K) — sup| / ' (oo) | , where ƒ ranges over all func­
tions defined and analytic on the complement G of K (with respect to 
the Riemann sphere), with | f(z)\ g 1 for all z G G and ƒ(<*>) =0 . Such 
an ƒ has an expansion near oo of the form ƒ(z) —ai/z+a2/z2+ • • • 
and, by definition, ƒ (oo) =ai . Unfortunately, there is no known way 
of computing geometrically the analytic capacity of any but the 
simplest compact sets, although there are some useful inequalities 
(see, for example the notes [33 ] of Zalcman) for relating it to com­
putable quantities. To compute y(K) requires knowledge of all 
bounded analytic functions on G. Even the problem of determining 
geometrical necessary and sufficient conditions that y(K) = 0 (which 
is equivalent to BH(G) being trivial), known as the Painlevé prob­
lem, is still unsolved after some eighty years. (See [20 ] for a plausible 
early reference—because of changed standards of rigor, I find it hard 
to decide whether this specific problem is actually discussed there.) 

The notion of s.p.b.d. suggests that it might be profitable to study 
the narrow topology v on BH(G). Here, we follow an idea of Beurling 
[ó] used in harmonic analysis. We say that a sequence fn of functions 
in BH(G) converges narrowly t o / , wri t ten/„A/, to mean that 

(OlI/nlUHI/IUand 
(ii) fn(z)—*f(z) uniformly on compact subsets of G. 
Then v is defined as the strongest topology with this kind of se­

quential convergence. Now v is a metric topology with the metric 

p(f,i) = \\(f-g)k\\-+ i i i /iu-y.i, 
where k is any conveniently chosen function that is continuous on 
G~, vanishes on dG, and vanishes nowhere in G. However, the narrow 
topology is not consistent with the linear structure of BH(G), because 
0 plays such a special role—a sequence that converges narrowly to 0 
must converge uniformly to 0. But everybody knows how to ap­
proximate 0 by rational functions or whatever! 

In another direction, /3(G) is a topological algebra, so one turns 
naturally to the study of j3-closed maximal ideals. This is equivalent 
to considering complex homomorphisms of BH(G) that are /?-con-
tinuous. Now even in the case G = £>, the maximal ideal structure of 
JEf°°(G) is very complicated, and one can hope that things will be 
simplified by restricting attention to the /3-closed maximal ideals, 
and this is indeed the case. A complex homomorphism $ of BH(G) is 
/3-continuous precisely when there exists a measure pÇzM(G) such 
that <£(ƒ) —ffdfx for all / E - B H ( G ) . In this case, we say that 3> is a 
distinguished homomorphism. A first question is how much a dis­
tinguished homomorphism must resemble evaluation at a point of G. 
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In [23], Shields and I showed that if the boundary of G is a union of 
continua, then the distinguished homomorphisms are just the point 
evaluations, $(ƒ) =f(zo) where, zo ranges over G. In [32], Zalcman 
gave a simple proof that for the general region G, the distinguished 
homomorphisms must all belong to the same Gleason part as the 
point evaluations. (To say that two complex homomorphisms $ and 
ty belong to the same Gleason part is to say that ||<£— ̂ | | < 2 , where 
the norm is the linear functional norm.) I t follows from the work of 
Behrens [5 ] that this Gleason part may contain complex homomor­
phisms that are not distinguished. In [15], Gamelin and Garnett 
prove that any Gleason part that contains a distinguished homo-
morphism contains a homeomorphic image of fi(N)\N, where fi(N) 
is the Stone-Cech compactification of the discrete space N of positive 
integers. Hence, any Gleason part contains a non-distinguished 
homomorphism. Rudin [24] gave an example of an infinitely con­
nected plane domain with a distinguished homomorphism that is not 
point evaluation (including evaluation at removable singularities for 
bounded analytic functions). Gamelin and Garnett showed [15] that 
there is at most one distinguished homomorphism <S> in the fiber over 
a point 0o£G~. To say that $ lies in this fiber is to say that $(ƒ) 
=f(z0) for all f^BH{G) that are analytic at 00. In particular, $(p) 
= p(zo) for every polynomial p if G happens to be bounded. Every 
homomorphism lies in some fiber. I t would be interesting to char­
acterize geometrically those points in the boundary of G that have a 
distinguished homomorphism in the fiber over them. This has been 
done in terms of analytic capacity by Gamelin and Garnett in [15], 
but I have already expressed my reservations about analytic capacity 
results in the present stage of development. In the same paper, they 
prove a result (Theorem 3.5) that implies the /3 corona conjecture 
that the point evaluations are dense in the space of distinguished 
homomorphisms. 

Let me now make a connection with, and generalization of, some 
classical function theory. In [23], Shields and I called a function 
fGBH(G) exterior when the principal ideal generated by ƒ is dense in 
P(G). UG = D1 then the exterior functions are just the outer functions, 
i.e., those functions/such that 

1 rv z + eie 

f(z) = exp— I -dix(e), 
2TTJ-* Z — etd 

where n is absolutely continuous with respect to Lebesgue measure. 
I t is an important problem to give a geometrical characterization of 
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the exterior functions on the general open set G. In particular, one 
would expect that if ƒ is a nonvanishing function in BH{G), then ƒ 
being exterior or not is a local property of ƒ on the boundary. In his 
forthcoming thesis, my student C. W. Kennel proves some surprising 
results in this direction, even in the case G=D. First of all, it is now 
clear that if ƒ is exterior in G and if G'Ç1G> then f =ƒ | G> is exterior in 
G'. Also, if G is simply connected, and iî<p:D~~>G is a Riemann map of 
D one: one onto G, then fo<p is outer in D. Kennel proves that given 
any nonvanishing ƒ ÇZBH(D), we may construct two simply connected 
regions G\ and G2 in D, with GiUG2 = Z>, so t h a t / i =ƒ | QX and f2 =ƒ | a% 

are both exterior functions. The question of how being exterior 
depends on the domain is a delicate one. Kennel proves the following 
result in this direction. In D, the function, defined for zÇzD, 

a(z) = exp [——:) 

is sometimes called the "world's best function" and sometimes called 
the "world's worst function". I propose here the name, the "atomic 
function". I t is very far from being an outer function. At any rate, let 
G be a simply connected subset of D and let a'—O\Q. For certain 
domains Gf a1 is an exterior function, and for others, it is not. Those 
domains for which it is not are characterized by Kennel as follows. 
Let <p:D-*G be a Riemann map, and look at those points euÇzdD for 
which <p*(eu) = l, where <p* is the Fatou radial limit function asso­
ciated with <p. The condition is that there should exist a t least 
one such point a t which <p has an angular derivative. This means that 
lim {(<p(z) — l ) / ( s — eu)} should exist as z—>eu nontangentially. This 
means roughly that the boundary of G is tangential to the boundary 
of D at the point 1. For example, it follows from this result that if G 
is the unit disc with the nonnegative real axis removed, then 
exp {(s + l ) / (z —1)} is exterior on G, a somewhat surprising fact. 

The characterization by Gamelin and Garnett referred to above, of 
those points z0 in the boundary of G that have a distinguished 
homomorphism in the fiber over them, is in terms of the convergence 
of a so-called Melnikov series. Kennel proves, when G is bounded, and 
encloses no removable singularities for BH(G), that the divergence of 
this series is necessary and sufficient that the function z—20 be 
exterior. Thus, under these mild conditions on G, z0 has no dis­
tinguished homomorphism lying over it if and only if 2—z0 is exterior. 
Gamelin and Garnett have since privately communicated a direct 
proof of this fact. 
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In [23], Shields and I also defined an interior function ƒ as one for 
which the principal ideal (ƒ) generated by ƒ is jS-closed. In D, the 
interior functions are just the products of inner functions by units. (A 
unit is a function ƒ ÇZBH(G) such that l/fÇzBii(G). This just says that 
ƒ should be bounded away from 0 in G.) My student, C. W. Neville, is 
now investigating the interior-exterior factorization on general regions 
G, and also for which regions G the result holds that Shields and I 
proved for D, namely that every /3-closed ideal is principal. He has 
found some geometrical conditions on G that are sufficient for an 
analogous result to hold, and has shown that these conditions cannot 
be completely dropped, but his results are not yet complete. 

Finally, one can pose the analogous questions about interior and 
exterior functions for domains in complex n space. Since this lecture 
was given, Shields and I have proved that the function f(zi9 22) 
=21 has no interior-exterior factorization in the unit ball B2 

= {(21, ^2)• I^i| 2-f-|^2| 2 < 1 } and that the function g(z\, 22)=2i—s2 

has no interior-exterior factorization in the polydisc D2 

«={(«!,*«): |*iI < 1 . |%| < l | . 
In summary, I hope I have given some feeling for the interworking 

of functional analysis and classical analysis in one area of mathe­
matics. Nothing would please me more than to have stimulated some 
interest in this area, both by the results I have described, and by the 
problems I have posed. 
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