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FINITE DIMENSIONAL Ü-SPACES1 

BY MORTON CURTIS2»3 

1. Introduction. An H-space is a space X with base point e equipped 
with a continuous function 

X X X^X 

such that [JL(X, e) ~x=n(e, x) for all # E X . This condition can also be 
formulated as follows. The wedge X\/X of X is defined by 

I V I = ( I X e ) U ( e X I ) C I X I , 

and the folding map V is given by 

V(#, e) = x, V(e, x) = x, V:X V X -> X. 

The iJ-space condition is then that the following diagram commutes 

xxx^x 

M 
xvx 

where i is the inclusion map. This formulation has the advantage that 
we can now relax the condition and just require that the diagram be 
homotopy commutative; i.e., that the maps j u o i and are homo-
topic, JU o i ^ V . 

When one is considering different i?-space structures /x, /x' on an 
iï-space X this distinction between the diagram commuting and 
homotopy commutating is important. But we will be concerned solely 
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with the question: Given X, does X support any JET-space structure 
li. Then the distinction is unimportant. For if X is nice enough to 
have the homotopy extension property and /x o i~V, then there 
exists a ^'.XXX—tX with ju' o i = V. From this it also follows easily 
that if F is an iJ-space and X has the homotopy type of F, X~ F, 
then X is also an if-space. 

An important example of if-spaces is the space of loops in a space. 
If yo£.Y, we define 

Q(y,yo) = {/:[0,1] -> F | ƒ is continuous,/(O) = / ( l ) = y0}, 

and topologize this set with the compact-open topology. An iï-space 
structure JU:£2X£2-*Q on Ö is given by 

M ( A * ) ( 0 « / ( 2 0 , O S f S l / 2 , 

= g(2* - 1), 1/2 S / £ 1. 

Thus, in a vague sense, we have as many iï-spaces as we have topo­
logical spaces. But loop spaces are usually infinite dimensional in a 
very real sense. For example, it is a classical result due to M. Morse 
that 

fl»<*-1>(Q(S»,yo);2) 5*0 

for & = 1, 2, 3, • • • . 
So we will consider finite-dimensional iî-spaces. As a matter of 

fact we consider compact, simply connected manifolds and ask which 
of these will support an iî-space structure. For many of the impor­
tant jff-space questions we are ignoring (e.g. how many iî-space 
structures a given il-space X has, does X have homotopy associative 
or homotopy commutative structures, etc.) the reader is referred to 
StashefFs monograph. 

We begin by recalling the classification of a very special class of 
iï-spaces. 

2. Lie groups. A topological group (X, /x) is an iT-space such that 
JJL is associative and such that left translations by elements a of X 

x—>}i(a, x) 

are homeomorphisms. Since the affirmative solution to Hubert 's fifth 
problem by Gleason and Montgomery-Zippin, we know that if X is 
a manifold which is a topological group, then X is actually a Lie 
group; i.e. it has a differentiable structure in which the group opera­
tions are analytic. Powerful analytic and algebraic tools have been 
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used in the study of Lie groups and all Lie groups are known. All 
Lie groups can be built up from vector groups, tori and simple groups 
(those having no closed normal subgroups). All of the simple groups 
are known from the work of E. Cartan, Killing and Weyl. 

The compact simply connected simple Lie groups are: 
(i) The spin groups Spin(w), of dimension n(n —l)/2 (these are 

double coverings of the rotation groups Sö(n)). 
(ii) The special unitary groups S\J(n), of dimension n2 — 1. 
(iii) The symplectic groups Sp(w), of dimension 2n2+n. 
(iv) The five exceptional groups, G2, FA, E§, -E7, -Es of dimensions 

14, 52, 78, 133, 248. 
The existence of these exceptional groups is mysterious and one 

has the impression that he is looking at a small part of a jig-saw 
puzzle. I t is a long-range hope that by studying iï-spaces we will see 
more of the puzzle and that these groups will be a part of some rea­
sonable pattern. 

Incidentally, in classifying spaces which support a Lie group struc­
ture one need not worry about what kind of equivalence of spaces is 
used (e.g. homotopy equivalence, homeomorphism). I t is a remark­
able theorem due to Baum and Browder [8] that if two simple Lie 
groups Gi, G2 are homotopy equivalent, then they are isomorphic. 
This result was extended by Scheerer [64] to all simply connected 
Lie groups. 

3. Equivalence of spaces. For classifying iï-spaces there is no 
result like the Baum-Browder result for Lie groups, and we must 
decide what is the most appropriate equivalence relation. If we insist 
on homeomorphism as an equivalence, we get too many ü-spaces to 
make classification reasonable. This is pointed up sharply by the 
following theorem due to John Morgan (unpublished). 

THEOREM. Let Mn be a compact simply connected manifold with 
w ^ 6 . Then there exist infinitely many nonhomeomorphic manifolds 
{Mi} each with the homotopy type of M if and only if 

HAk(Mn;Q) ?*0 

for some k>0 with ik<n. 

If we have an i?-space with such cohomology, then all of the Mi 
will also be iï-spaces. For example, 

H * ( S U ( 4 ) ; 0 ) ^ O , 

so these are infinitely many H-space manifolds all with the homotopy 
type of SU(4). 
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Thus we work with homotopy types—two manifolds are equivalent 
if they have the same homotopy type. This will eliminate the problem 
we had using homeomorphism as equivalence, for it is a recent result 
of Curjel-Douglas [26] that in any dimension n there are only finitely 
many homotopy types of spaces which will support an iï-space 
structure. 

In working toward a classification there are obviously two lines of 
attack. 

A. Find conditions X must satisfy if it is to be an iï-space. 
B. Find new ïï-spaces. 

We will be concerned with A in the next two sections. 

4. Cohomology and homotopy of ïï-spaces. There is a classical 
result due to H. Hopf [38] about the rational cohomology of a 
(finite-dimensional) iï-space X; namely, 

H*(X;Q) = A(*i, • • - , * ) , 

that is, H*(X; Q) is an exterior algebra. Furthermore, the dimension 
of each generator Xi is odd. 

(This contrasts sharply with the situation for infinite-dimensional 
ïï-spaces. For example, Q(£2n+1, y0) has, as cohomology ring, a poly­
nomial algebra on one generator of dimension In,) 

The number r of generators in 

H*(X;Q) = A(*i, • • • , * ) 

is called the rank of the ïï-space X. If X is a Lie group, this agrees 
with the usual definition of rank. 

A. Borel [lO] has calculated that ZP cohomology of an ïï-space 
(p a prime) 

H*(X; Z9) = A(*x, • • • , xr) @ Z9\yu • • • , ym]/(yïn • • • y**). 

Tha t is, it is a sum of an exterior algebra and a truncated polynomial 
algebra. If p>2 then the Xi have odd dimension and y$ have even 
dimension. If p = 2 all generators have odd dimension. 

These theorems make it easy to eliminate some candidates for H-
spaces. For example, consider principal S7 bundles over SU(3). By 
using the classifying bundle S7—>S15—>58 and a simple Serre spectral 
sequence argument one sees that only the trivial bundle 57XSU(3) 
has a possible cohomology ring to be an iï-space. I t is interesting to 
contrast this with a theorem of Curtis-Mislin [27] showing that all 
principal SU (3) bundles over S1 are üf-spaces. 

W. Browder [17] proved that a finite-dimensional iï-space X has 
ic%(X) = 0 . (For X a Lie group this had been proved by Hopf.) He 
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also showed that X satisfies Poincaré Duality (without, of course, 
assuming, as we are, that our spaces are manifolds). 

5. Impossible rings. A useful technique in eliminating candidates 
for i7-spaces is based on the fact that not all rings are realizable as 
cohomology rings of spaces. For example, there does not exist a finite 
complex Y with torsion-free Z-homology with the following cohomol­
ogy ring (with Z coefficients) 

H2 H* # 6 H* H10 H12 Hu F 1 6 H18 H20 H22 H2* 

0 0 0 Z 0 Z 0 Z 0 Z 0 Z 
I I I I I 

generators: xx %2 #3 #4 #5 
The generators are required to satisfy 

2 2 

The rest of the ring is arbitrary. This result has been proved inde­
pendently by Hubbuck [41 ] and Douglas-Sigrist [30]. Its applica­
tion to i?-spaces is via the Projective plane of an PL-space, a notion due 
to Stasheff [68]. We describe this briefly to show why the impossible 
ring given above was important. 

Recall that the Hopf construction H(f) on a map ƒ : A XB—>C is the 
map of the join A * B to the suspension SC given by the formula 

H(f)(a, b, t) = (f(a, b), t). 

The projective plane P 2 X of an i?-space X, / z :XXX-*X, is the map­
ping cone of H(IJL) :X * X—» 2 X . 

If X has dimension n, then P 2X has dimension 2n-\-2. The term 
projective plane is justified somewhat by the following facts. 

P2(S°) = RP2, 

P2CS1) - CP2
} 

P2(S3) = HP2 (quaternionic), 

P2CS7) = Cayley projective plane. 

The cohomology of P 2 X has been calculated by Browder and 
Thomas [20 ], and these results have been quite useful in eliminating 
certain candidates for iüT-spaces. Suppose some S7 bundle over S11, 
S7—>X—>Sn, were an iî-space. Then üZr*(P2X; Z) would be the im­
possible ring given at the beginning of this section. Thus no S7 bundle 
over S11 is an H-space. Similarly one shows that no S7 bundle over 
S16 is an iï-space. These were the only cases of sphere bundles over 
spheres which had not already been decided by Frank Adams [2]. 
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6. Pre-Zabrodsky H-spaces. We now come to part B, the con­
struction of new üT-spaces. Recall that we consider only compact 
simply connected manifolds. Before 1968 only S7 and Lie groups 
(and, of course, products of these) were known. In 1968 the Hilton-
Roitberg Criminal X [36], [37] appeared. The space X is a principal 
5 s bundle over S7 with the remarkable property that although X 
does not have the homotopy type of Sp(2), the spaces XXSZ and 
Sp(2) XS3 are diffeomorphic. This shows X is an ü-space since it is a 
retract of the Lie group IX*S3 , and it is easy to see that any retract of 
an JET-space is an H-space. Unfortunately, the technique used here 
does not seem to work to produce more examples of iï-spaces. But X 
was the first example (except S7) which does not have the homotopy 
type of any Lie group. 

Now there is a new method due to Zabrodsky [83] which produces 
scads of examples. 

7. Mixing homotopy types. A map ƒ : X—> F is a rational equivalence 
if 

f*:H*(Y;Q)->H*(X;Q) 

is an isomorphism. I t is a ^-equivalence if/* is an isomorphism using 
Zp as coefficients. If (P is the set of all primes and (PiC<P, a (Pi equiva­
lence means a ^-equivalence for each p £ (Pi. 

THEOREM (ZABRODSKY). Let f:X-*Y be a rational equivalence and 
let (PiC(P. Then f may be factored as 

where j \ is a (Pi (and rational) equivalence, f2 is a <P — (Pi (and rational) 
equivalence, andf2 is afibralion. Moreover, if X and Y are H-spaces and 
fis an H-map, then X(&i) is an H-space andfi,f2 are H-maps. 

Instead of creating new i?-spaces such as X((?i), one may have a 
candidate at hand and want to establish that it is indeed an iî-space. 
For that purpose the following corollary to Zabrodsky^ theorem is 
useful. 

COROLLARY [27]. Given 

ƒ g 
XQ —> Xi —> X%, 

ƒ, g rational equivalences such that ƒ is a ^equivalence and g is a (P r 

equivalence with (PiVJ(P2 = (P. Suppose Xo, X2 are H-spaces having 
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homoiopy types of finite CW complexes. Then Xi is an H-space of the 
homoiopy type of a finite CW complex. 

Here is a simple example of how this corollary may be used. 

THEOREM [27]. All principal SU(3) bundles over S7 are H-spaces. 

PROOF. Such bundles are classified up to bundle equivalence by 
homotopy classes of maps 

ƒ:5 7 —-> -E>su(3) 

and 7r7(£su(3))=7r6(SU(3))=Z6 by a result due to R. Bott [ i l ] . A 
generator a :S7-*Bsv(3) haspullback ( = induced bundle) 

SU(3) ->SU(4) ->S 7 . 

Let n denote a map S7—»57 of degree n. Let Yn be the total space of 
the bundle induced by 

n a 
S7 —>S7 —> Bsjj(z). 

We easily see that Yn is homotopy equivalent to F_w (in Z6), so the 
only possible different homotopy types are 

Y0 = S7 X SU(3), Fi = SU(4), F 2 and F3 . 

These are easily seen to be distinct homotopy types since 7r6(F„) 
^Zi/nZs. Consider the diagram 

Fo = F6 -* F2 U Yx - SU(4) 

1 3 l 2 l a 
S7 -> S7 ~> S7 ~> BBUCS). 

Then <j> is a (9— {3} equivalence and xf/ is a (P— {2} equivalence and 
both are rational equivalences. Since Fo = S7XSU(3) and Fi = SU(4) 
are üT-spaces, so is F2. Interchanging 2 and 3 we see that F8 is an 
iî-space. q.e.d. 

8. Remarks. This section is devoted to a report on a few recent 
developments in the theory of finite-dimensional iï-spaces. References 
are not attempted because none of the results are in print a t this 
time. Spaces here are to have the homotopy type of finite CW com­
plexes. 

|(a) The classification of H-spaces of rank rg2 (see §4) is now com­
plete. In the simply connected case this takes us up through dimen­
sion 10. The homotopy types are: 
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S3, (S3)2, S7, SU(3), (S3)3, S3 X S7, Sp(2) = £w, E3w, E4w, E5w. 

Here co is the map of S7 into Bs* inducing Sp(2) and nœ denotes a 
map S7—^S7 of degree n following o>, En(a being the induced principal 
S3 bundle over 57 . This work was done by Curtis-Mislin, Hilton-
Roitberg and Zabrodsky, but only Zabrodsky succeeded in elimi­
nating the candidates E2(a and E6co. Mislin has worked out the non-
simply connected case, but his results in dimension 10 are not yet 
complete. Up through dimension 9 we have the following additions 
to the list above 

S\PS*, SO(3),PS7,RP7
} PSU(3). 

(b) Questions about associativity of the new 10-dimensional H-
spaces are resolved as follows. E^ (which is the Hilton-Roitberg 
Criminal) has the homotopy type of a loop space; Stasheff [69]. 
SBXS7 and E3w admit no homotopy associative multiplication. E\a 

was more difficult, but D. Rector has recently shown it has no homo­
topy associative multiplication. 

(c) A general result as to which of a special class of principal 
bundles over spheres are üT-spaces has been obtained by Harrison 
and Stasheff, again using Zabrodsky's method of mixing homotopy 
types. Let GZ)H be a pair of topological groups which are finite 
complexes. Assume that G/H~Sn and that the element a£ î „_ i ( f f ) 
classifying the principal bundle H-±G—>Sn is of finite order. Write 

a = a2 + OLZ + as + • • • + OLP + • • • + aq 

where subscripts represent distinct primes and av has £th power 
order. Let E$ be the bundle induced by j8£7rn_i(iJ). Then suppose 

with €i = 0, ± 1. Then E$ is an iî-space <=> 
(i) n is odd and €2T^0, or 

(ii) w = l, 3, 7. 
(d) A contribution to the knowledge of the Zv cohomology of 

finite-dimensional topological groups X has recently been made by 
C. Wilkerson. By using Adams operations (see Hubbuck [4l]), he 
generalized Serre's theorem for compact Lie groups, stating for which 
primes p, X is a ^-equivalent to a product of spheres. 

(e) Curj el has shown that a frequently used hypothesis about H-
spaces is frequently superfluous. Writing 

H*(X;0) = A(*i, • • - , * ) , 
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he shows that by repeatedly changing the iJ-space structure on X, 
the generators #i, • • • , xr may all be made primitive, so that 
H*(X; Q) is primitively generated. The result extends to H*(X; Z) if 
it has no torsion. 
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