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A series of unitary representations of a semisimple Lie group is 
said to be a principal series if the representations are induced from 
characters of a so-called parabolic subgroup. In the event that the 
parabolic subgroup is minimal (i.e., a Borel subgroup) one says that 
the series is nondegenerate. I t has recently been shown through the 
efforts of Kostant and Wallach, among others, that for the complex 
semisimple groups all of the representations in the nondegenerate 
principal series are irreducible. However, a t present no such general 
result is known for the remaining series; i.e., the degenerate principal 
series. 

This note considers the degenerate principal series of the rank two 
complex symplectic group G = Sp(2, C). G has exactly two such series, 
each associated with a maximal parabolic subgroup which turns out 
to be a semidirect product of a normal nilpotent group with a sub­
group isomorphic to the 2X2 complex general linear group GL(2, C). 
In one case the nilpotent group is abelian, and quite elementary classi­
cal Fourier analysis leads to a proof that the representations in the 
corresponding degenerate series are already irreducible when re­
stricted to the parabolic subgroup. For the other case the analysis is 
much different, since the nilpotent group is nonabelian and the re­
striction is not irreducible. 

In what follows we investigate this latter situation. In particular, 
we develop the required nonabelian harmonic analysis, use it to de­
compose the restrictions of the representations, and show that the 
representations of G in this degenerate principal series are indeed not 
all irreducible. In this context one also obtains a natural variant of the 
Shale-Weil representation for the complex rank two special linear 
group SL(2, C). 

In a paper in preparation we extend these results to the rank n 
real and complex case and develop for these degenerate principal 
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series the Kunze-Stein theory of intertwining operators, analytic 
continuation, uniformly bounded representations, and complemen­
tary series. 

G consists of 4 X 4 matrices g for which %gpg — p with /> = (?"ô1)» 
I being the 2X2 identity matrix. The parabolic subgroup H we con­
sider is the semidirect product of the normal nilpotent subgroup Z of 
matrices 

z = z(u, 0 = (u, £) = 

1 0 0 0 

-U2 1 0 0 

£ U\ 1 U2 

ux 0 0 1 

where u = («i, w2)GC2, with the subgroup C, isomorphic to GL(2, C), 
consisting of the matrices 

c = c(a, a) 

0 0 0 

o i l 0 012 

0 or1 0 

#21 0 #22 

with a £ C * (the multiplicative group of the complex field) and 
a £ S L ( 2 , C) ( = S p ( l , C)). 

We briefly describe the realization of the representations T( •, %) 
in the degenerate principal series which is appropriate to our analysis. 
Let h = cz denote the generic element of H; let W be the group trans­
pose to Z with generic element w = *z; K = WC the group transpose 
to H with generic element k=wc; and X — KZ. X is an open set of 
full Haar measure, from which it follows that for each g EG, zg£:X 
for a.e. z&Z; i.e., 

zg = [w(zg)c(zg)]zg 

where zgEZ, w(zg)&W, and c(zg) =c(a(zg), <x(zg))&C. (z, g)->zg is a 
group action of G on Z in the sense that given gi, g2£G one has 
(2fi)ê2 = 2(gig2)~ for a.e. s. The representations 7 \ - , x) are multiplier 
representations of G in the space ^)=L 2 (Z) , indexed by the unitary 
characters x oî C where x(c) = | a | 8 [ a ] m with 5 purely imaginary, m 
an integer, and [a ]=sgn a = a / | a | for a £ C * . Then for ƒ £ § and 
gGG, 

(T(g,X)f)(z) = | « (^ ) | 8 + 4 [ a (0g)h / (^ ) a.e. 

The two special cases of this formula that we use below are as follows: 
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For ho = CoZoÇzH, 

(T(h0, x)f)(z) = | CKO T [ao]m/(ao«^o + «o, <x0£ + £o + a0(wa01 Wo» 

where (u\v) denotes the skew-form uplv on C2; and 

THEOREM 1. Define the operator J on Schwartz-class functions f on Z 
by 

«ƒ)(*(«, £)) = - f (A3/)(*, i-+(u\ * » * 
J c2 

w/^re A3 denotes the Laplacian applied to the third coordinate] i.e., £. J 
extends to a unitary operator on § which together with the identity opera-
tor forms a basis for the commuting algebra of the restriction to H of 
T(-, X) for all X' 

COROLLARY 2. T( -, x) is irreducible f or each x ^ l and is reducible 

forx**!-

The corollary follows from the theorem by means of two observa­
tions: (1) p and H generate G, and (2) J fails to commute with 
T(p> x) for X5^1 and commutes for x = l» As for the theorem, one 
can formally verify that / commutes with T(h, x) for all hÇzH, but 
to see that / is unitary and that I and / form a basis for the com­
muting algebra one introduces the Plancherel transform of the group 
Z. We outline the main ideas because they are of independent interest. 

The following is a variant of the well-known Stone-von Neumann 
theorem : 

THEOREM 3. (i) Exclusive of the one-dimensional representations, 
the dual object 1 of Z is C*, and for each X £ C * there corresponds a 
representation £/(•, X) of Z in ^fl—L^C) defined for J'GSM by 

(U(z, \)f)(t) = exp{i Re Xft - ut(ut + 2t))}f(t + ux). 

(ii) The map <j>—*$ initially defined for <f> in Schwartz' class on Z by 
0(X) =fz<l>(z) U(z, \)dz, extends to a unitary map $ of § onto the Hu­
bert space § of f unctions on Ê with values in Hilbert-Schmidt operators 
on 9JÎ which are square-summable with respect to Plancherel measure 
dmÇK) = c|X| 2dk (where c is a constant which we ignore). By means of 
the identification of $(X) with its Hilbert-Schmidt kernel $(• , •, X) we 
can look at $ as a map $: §—>̂ > =L 2 (Z, duiduzdmfà). In explicit terms, 
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2F == (RŜ lFs, where 9v is the partial Fourier transform in thejth coordinate 
and &:£—»£ is given by 

(öty)(«i, u2, Ö = <t>(uz - «i, -£(«i + «2), £). 

THEOREM 4. (i) £ac& c G C acts as an automorphism of ZbyzZ — c~xzc, 
and hence acts dually on U( •, X) by the definition (c U) (z, X) = U(zZ, X) 
/or a// zGZ. Moreover, for each fixed X awd c, CU{-, X) awrf £/(•, Xa2) 
are unitarily equivalent: i.e., there exists an operator S(c, X), unique up 
to scalars, such that eU(z, X) =S(c, X)""1^/^, Xa2)5(c, X) for all z. 

(ii) For c = c(a, 1), se/ S(c, X) = F(a, X). Then the arbitrary scalar 
for V(a, X) may be fixed in such a way that a—* V(a, X) is a unitary repre­
sentation of SL(2, C). In fact, the operators V(a, X) are given explicitly 
on a set of generators f or SL(2, C) as follows: ForfEWl, 

(V(v(k),\)fXt) = exp{-i Re (X«) }ƒ(*), 

(F(/(o),X)/)(0= I M/(<*)> 

•«-e O- '(4,-(o "-.)• ^-(rô) e s L a c ) 

tró& &GC and JGC*, and 

ƒ(/) = TT1 f ƒ(«>) exp{2i Re (/w)}^. 

(iii) For c = c(I, a) the operators S(c, X) are independent of\ and we 
can set S(c, X) =D(a), where for /G9tt we have (D(a)f)(t) -\a\f(ta). 
D(a) intertwines the representations F(«, X) and V(>, Xa2) 0/SL(2, C). 
In particular, the representations V(*, X) are aK mutually unitarily 
equivalent. 

(iv) TTte commuting algebra of V( •, X) is two-dimensional and the 
operators D(l) = J and Z>( — 1) /#rm a oasis. 

LEMMA 5. Let t(h, -)Ù^^T{h, x)$~lfor all hEH. Then f or <£G£ 
and zÇzZ, aGSL(2, C), a£.C*, one has 

(f(f ,x)f l(X)-^)P(rSX), 
( f (c(a, l),x) *)(X) - F(*, X)*(X)7(a, X)"1, 

(*(*(/, a), x)fl(X) - |a|-*[a]-Z?(a)^(Xor«)JD(a)-i. 

LEMMA 6. The bounded operator Ê commutes with t(hf x) for all hEH 
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if and only if there exists a measurable function X—>B(\) with values in 
bounded operators on Wl such that the following three conditions hold: 

(1) For each 0 G § , (B$)(X)=B(K)$(k) ax. 
(2) For each a€SL(2, C), ÊÇK) F(a, X) = V(a, \)ÊÇK) a.e. 
(3) For each a £ C * , £(Xor2) =P(a)~1J5(X)D(a) a.e. 

THEOREM 7. (i) B commutes with T(h, x) for all h&H if and only if 
B satisfies condition (1) above and there exist constants c\ and c2 such 
that Ê(k) = cJ+c2D( - 1 ) for a.e. X. 

(ii) Let J be the commuting operator defined for $£ip by (?$)Çk) 
= £>( — 1)<£(X). Viewed as an operator on | ) , 3 becomes 3% defined by 
(J$)(uu u2, £) =$(-~uh u2, £) for <?ej>. 

(iii) With J as in Theorem 1, J = 9:""1J'3:. 

Thus Theorem 1 is established. 
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